
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 24 (Final Lecture!)
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Logistics

• Problem Set 5 can be submitted up to Thursday at 11:59pm.

• Exam is next Wednesday 12/18, from 10:30am-12:30pm in the
Totman Gym.

• Similar format to midterm. Closed book, no calculators.

• I am holding exam review office hours this Friday 12/13
10-11:30am in ELab 303 and next Tuesday 12/17 2:30pm-4pm in
LGRC A112.

• It would be really helpful if you could fill out SRTIs for this class.
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Summary

Last Class:

• Analysis of gradient descent for convex and Lipschitz functions.

• Direct extension to constrained optimization via projected
gradient descent. Analysis for convex functions and convex
constraint sets.

• Motivation for stochastic gradient descent (SGD) for performing
gradient descent at scale.

This Class:

• Online optimization and online gradient descent.

• Analysis of online gradient descent.

• Application to analysis of SGD as a special case.
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Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data
points !x1, . . . ,!xn and labels/observations y1, . . . , yn solve:

!θ∗ = argmin
!θ∈Rd

L(!θ, X, y) =
n∑

j=1

#(M!θ(!xj), yj).

The gradient of L(!θ, X) has one component per data point so can be
very expensive to compute.

Solution: Update using just a single data point, or a small batch of
data points per iteration.

• If the data point is chosen uniformly at random, the sampled
gradient is correct in expectation.

!∇L(!θ, X) =
n∑

i=j

!∇#(M!θ(!xj), yj) → Ej∼[n][!∇#(M!θ(!xj), yj)] =
1
n
· !∇L(!θ, X).

• The key idea behind stochastic gradient descent (SGD).
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Online Gradient Descent

SGD is closely related to online gradient descent.

In reality many learning problems are online.

• Websites optimize ads or recommendations to show users,
given continuous feedback from these users.

• Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

• Face recognition systems, other classification systems, learn
from mistakes over time.

Want to minimize some global loss L(!θ, X), when data points are
presented in an online fashion !x1,!x2, . . . ,!xn (like in streaming
algorithms)

Will view SGD as a special case: when data points are presented (by
design) in a random order.
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Online Optimization Formal Setup

Online Optimization: In place of a single function f, we see a
different objective function at each step:

f1, . . . , ft : Rd → R

• At each step, first pick (play) a parameter vector !θ(i).
• Then are told fi and incur cost fi(!θ(i)).
• Goal: Minimize total cost

∑t
i=1 fi(!θ(i)).

No assumptions on how f1, . . . , ft are related to each other!
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Online Optimization Example

UI design via online optimization.

• Parameter vector !θ(i): some encoding of the layout at step i.

• Functions f1, . . . , ft: fi(!θ(i)) = 1 if user does not click ‘add to cart’
and fi(!θ(i)) = 0 if they do click.

• Want to maximize number of purchases. I.e., minimize∑t
i=1 fi(!θ(i))
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Online Optimization Example

Home pricing tools.

• Parameter vector !θ(i): coefficients of linear model at step i.

• Functions f1, . . . , ft: fi(!θ(i)) = (!θ(i) − pricei)2 revealed when homei
is listed or sold.

• Want to minimize total squared error
∑t

i=1 fi(!θ(i)) (same as
classic least squares regression).
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Regret

In normal optimization, we seek θ̂ satisfying:

f(θ̂) ≤ min
!θ

f(!θ) + ε.

In online optimization we will ask for the same.

t∑

i=1

fi(!θ(i)) ≤ min
!θ

t∑

i=1

fi(!θ) + ε =
t∑

i=1

fi(!θoff) + ε

ε is called the regret.

• This error metric is a bit ‘unfair’. Why?
• Comparing online solution to best fixed solution in
hindsight. ε can be negative!
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Online Gradient Descent

Assume that:

• f1, . . . , ft are all convex.
• Each fi is G-Lipschitz (i.e., ‖!∇fi(!θ)‖2 ≤ G for all !θ.)
• ‖!θ(1) − !θoff‖2 ≤ R where θ(1) is the first vector chosen.

Online Gradient Descent

• Set step size η = R
G
√
t .

• For i = 1, . . . , t
• Play !θ(i) and incur cost fi(!θ(i)).
• !θ(i+1) = !θ(i) − η · !∇fi(!θ(i))
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Online Gradient Descent Analysis

Theorem – OGD on Convex Lipschitz Functions: For convex G-
Lipschitz f1, . . . , ft, OGD initialized with starting point θ(1) within
radius R of θoff, using step size η = R

G
√
t , has regret bounded by:

[ t∑

i=1

fi(θ(i))−
t∑

i=1

fi(θ∗)
]
≤ RG

√
t

Average regret goes to 0 and t → ∞. ‘Sublinear regret’ or ‘no regret’
algorithm. No assumptions on f1, . . . , ft!

Step 1.1: For all i, ∇fi(θ(i))T(θ(i) − θoff) ≤ ‖θ(i)−θoff‖2
2−‖θ(i+1)−θoff‖2

2
2η + ηG2

2 .

Convexity =⇒ Step 1: For all i,

fi(θ(i))− fi(θoff) ≤
‖θ(i) − θoff‖22 − ‖θ(i+1) − θoff‖22

2η
+

ηG2

2
.
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Stochastic Gradient Descent

Recall: Stochastic gradient descent is an efficient offline
optimization method, seeking θ̂ with

f(θ̂) ≤ min
!θ

f(!θ) + ε = f(!θ∗) + ε.

Easily analyzed as a special case of online gradient descent!
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Stochastic Gradient Descent

Assume that:

• f is convex and decomposable as f(!θ) =
∑n

j=1 fj(!θ).

• E.g., L(!θ, X) =
∑n

j=1 #(M!θ(!xj), yj).

• Each fj is G
n -Lipschitz (i.e., ‖!∇fj(!θ)‖2 ≤ G

n for all !θ.)
• What does this imply about how Lipschitz f is?

• Initialize with θ(1) satisfying ‖!θ(1) − !θ∗‖2 ≤ R.

Stochastic Gradient Descent

• Set step size η = R
G
√
t .

• For i = 1, . . . , t
• Pick random ji ∈ 1, . . . ,n.
• !θ(i+1) = !θ(i) − η · !∇fji(!θ(i))

• Return θ̂ = 1
t
∑t

i=1
!θ(i).

14

term'sl o s s

- . (loss
o n datapanti



Stochastic Gradient Descent

Assume that:

• f is convex and decomposable as f(!θ) =
∑n

j=1 fj(!θ).

• E.g., L(!θ, X) =
∑n

j=1 #(M!θ(!xj), yj).

• Each fj is G
n -Lipschitz (i.e., ‖!∇fj(!θ)‖2 ≤ G

n for all !θ.)
• What does this imply about how Lipschitz f is?

• Initialize with θ(1) satisfying ‖!θ(1) − !θ∗‖2 ≤ R.

Stochastic Gradient Descent

• Set step size η = R
G
√
t .

• For i = 1, . . . , t
• Pick random ji ∈ 1, . . . ,n.
• !θ(i+1) = !θ(i) − η · !∇fji(!θ(i))

• Return θ̂ = 1
t
∑t

i=1
!θ(i).

14



Stochastic Gradient Descent

Assume that:

• f is convex and decomposable as f(!θ) =
∑n

j=1 fj(!θ).

• E.g., L(!θ, X) =
∑n

j=1 #(M!θ(!xj), yj).

• Each fj is G
n -Lipschitz (i.e., ‖!∇fj(!θ)‖2 ≤ G

n for all !θ.)

• What does this imply about how Lipschitz f is?

• Initialize with θ(1) satisfying ‖!θ(1) − !θ∗‖2 ≤ R.

Stochastic Gradient Descent

• Set step size η = R
G
√
t .

• For i = 1, . . . , t
• Pick random ji ∈ 1, . . . ,n.
• !θ(i+1) = !θ(i) − η · !∇fji(!θ(i))

• Return θ̂ = 1
t
∑t

i=1
!θ(i).

14

- .

F j i s c o n v e x .



Stochastic Gradient Descent

Assume that:

• f is convex and decomposable as f(!θ) =
∑n

j=1 fj(!θ).

• E.g., L(!θ, X) =
∑n

j=1 #(M!θ(!xj), yj).

• Each fj is G
n -Lipschitz (i.e., ‖!∇fj(!θ)‖2 ≤ G

n for all !θ.)
• What does this imply about how Lipschitz f is?

• Initialize with θ(1) satisfying ‖!θ(1) − !θ∗‖2 ≤ R.

Stochastic Gradient Descent

• Set step size η = R
G
√
t .

• For i = 1, . . . , t
• Pick random ji ∈ 1, . . . ,n.
• !θ(i+1) = !θ(i) − η · !∇fji(!θ(i))

• Return θ̂ = 1
t
∑t

i=1
!θ(i).

14

- -

paybirewdil
y

- r n110401112=11%4081071125%41109,911
2

s n .§ I f



Stochastic Gradient Descent

Assume that:

• f is convex and decomposable as f(!θ) =
∑n

j=1 fj(!θ).

• E.g., L(!θ, X) =
∑n

j=1 #(M!θ(!xj), yj).

• Each fj is G
n -Lipschitz (i.e., ‖!∇fj(!θ)‖2 ≤ G

n for all !θ.)
• What does this imply about how Lipschitz f is?

• Initialize with θ(1) satisfying ‖!θ(1) − !θ∗‖2 ≤ R.

Stochastic Gradient Descent

• Set step size η = R
G
√
t .

• For i = 1, . . . , t
• Pick random ji ∈ 1, . . . ,n.
• !θ(i+1) = !θ(i) − η · !∇fji(!θ(i))

• Return θ̂ = 1
t
∑t

i=1
!θ(i).

14



Stochastic Gradient Descent

Assume that:

• f is convex and decomposable as f(!θ) =
∑n

j=1 fj(!θ).

• E.g., L(!θ, X) =
∑n

j=1 #(M!θ(!xj), yj).

• Each fj is G
n -Lipschitz (i.e., ‖!∇fj(!θ)‖2 ≤ G

n for all !θ.)
• What does this imply about how Lipschitz f is?

• Initialize with θ(1) satisfying ‖!θ(1) − !θ∗‖2 ≤ R.

Stochastic Gradient Descent

• Set step size η = R
G
√
t .

• For i = 1, . . . , t
• Pick random ji ∈ 1, . . . ,n.
• !θ(i+1) = !θ(i) − η · !∇fji(!θ(i))

• Return θ̂ = 1
t
∑t

i=1
!θ(i).

14

[



Stochastic Gradient Descent

!θ(i+1) = !θ(i) − η · !∇fji(!θ
(i)) vs. !θ(i+1) = !θ(i) − η · !∇f(!θ(i))

Note that: E[!∇fji(!θ
(i))] = 1

n
!∇f(!θ(i)).

Analysis extends to any algorithm that takes the gradient step
in expectation (batch GD, randomly quantized, measurement
noise, differentially private GD, etc.)
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Stochastic Gradient Descent Analysis

Theorem – SGD on Convex Lipschitz Functions: SGD run with
t ≥ R2G2

ε2 iterations, η = R
G
√
t , and starting point within radius R

of θ∗, outputs θ̂ satisfying: E[f(θ̂)] ≤ f(θ∗) + ε.

Step 1: f(θ̂)− f(θ∗) ≤ 1
t
∑t

i=1[f(θ(i))− f(θ∗)] (you prove on Pset 5, 2.3)

Step 2: E[f(θ̂)− f(θ∗)] ≤ n
t · E

[∑t
i=1[fji(θ(i))− fji(θ∗)]

]
.

Step 3: E[f(θ̂)− f(θ∗)] ≤ n
t · E

[∑t
i=1[fji(θ(i))− fji(θoff)]

]
.

Step 4: E[f(θ̂)− f(θ∗)] ≤ n
t · R · G

n
·
√
t

︸ ︷︷ ︸
OGD bound

= RG√
t .
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t · R · G

n
·
√
t

︸ ︷︷ ︸
OGD bound

= RG√
t .
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SGD vs. GD

Stochastic gradient descent generally makes more iterations
than gradient descent.

Each iteration is much cheaper (by a factor of n).

!∇
n∑

j=1

fj(!θ) vs. !∇fj(!θ)

17



SGD vs. GD

When f(!θ) =
∑n

j=1 fj(!θ) and ‖!∇fj(!θ)‖2 ≤ G
n :

Theorem – SGD: After t ≥ R2G2

ε2 iterations outputs θ̂ satisfying:

E[f(θ̂)] ≤ f(θ∗) + ε.

When ‖!∇f(!θ)‖2 ≤ Ḡ:

Theorem – GD: After t ≥ R2Ḡ2

ε2 iterations outputs θ̂ satisfying:

f(θ̂) ≤ f(θ∗) + ε.

‖!∇f(!θ)‖2 = ‖!∇f1(!θ) + . . .+ !∇fn(!θ)‖2 ≤
∑n

j=1 ‖!∇fj(!θ)‖2 ≤ n · G
n ≤ G.

When would this bound be tight?
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ε2 iterations outputs θ̂ satisfying:

f(θ̂) ≤ f(θ∗) + ε.

‖!∇f(!θ)‖2 = ‖!∇f1(!θ) + . . .+ !∇fn(!θ)‖2 ≤
∑n

j=1 ‖!∇fj(!θ)‖2 ≤ n · G
n ≤ G.

When would this bound be tight?

18

G D iterations
cost n t i e s m o r e
5 G D iteration

< c G

- O o
f ' ¥YVESfffyOf,f )

o f



SGD vs. GD
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Questions?
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Course Review
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Randomized Methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at
massive scale – set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 614 if you
want to learn more.

• In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.
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Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/ε2)
dimensions while preserving pairwise distances.

• Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

• Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

• Spectral graph theory – nonlinear dimension reduction and
spectral clustering for community detection.

• In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.
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Continuous Optimization

Foundations of continuous optimization and gradient descent.

• Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

• How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

• Simple extension to projected gradient descent for optimization
over a convex constraint set.

• Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods. Check
out CS 651 for more.
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