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Cameron Musco
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Lecture 24 (Final Lecture!)



- Problem Set 5 can be submitted up to Thursday at 11:59pm.

- Exam is next Wednesday 12/18, from 10:30am-12:30pm in the
Totman Gym.

- Similar format to midterm. Closed book, no calculators.

- I 'am holding exam review office hours this Friday 12/13
10-11:30am in ELab 303 and next Tuesday 12/17 2:30pm-4pm in
LGRC A112.

- It would be really helpful if you could fill out SRTIs for this class.



Last Class: \!

ANV
- Analysis of gradient descent for convex and Lipschitz functions.
— —_—
- Direct extension to constrained optimization via projected
gradient descent. Analysis for convex functions and convex

constraint sets. "’F/(?CCA’\ZSY\ MORS 5 dOSe/\('B (9%

- Motivation for stochastic gradient descent (SGD) for performing
gradient descent at scale.

This Class:

I

- Online optimization and online gradient descent.

. 6

- Analysis of online gradient descent. <;¢5$U\>f‘<»\ 5w\ ;?
ANGIN

- Application to analysis of SGD as a special case. 8)

/\—'—’



Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data

points Mn and labels/observations yi, ..., v, solve:

0" = argmm g,X, Y) = 2376 (X))
GeRrd — VN,
) er - j=1 lof)()f\“vwv“*d@/r]—
The gradient of L(6,X) has one component per data point so can be
i S LAY,
very expensive to compute.



Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data
points Xi,...,X, and labels/observations y4, ..., y, solve:

g = argmin L( 9 X,y

(M%),
ferd Z‘é&j%

The gradient of L(§, X) has one component per data point so can be
very expensive to compute.

Solution: Update using just a single data point, or a small batch of
data points per iteration.

- If the data point is chosen uniformly at random, the sampled
gradient is correct in expectation.

ZW Ma()), ) b By [V M4, v = “.wm.

i=j

- The key idea behind stochastic gradient descent, gSGD).



Online Gradient Descent

SGD is closely related to online gradient descent.
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In reality many learning problems are online.
- Websites optimize ads or recommendations to show users,
given continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn
from mistakes over time.
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Online Gradient Descent

SGD is closely related to online gradient descent.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users,
given continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn
from mistakes over time.

Want to minimize some global loss L(f, X), when data points are
presented in an online fashion X;, X, ..., X, (like in streaming
algorithms)

Will view SGD as a special case: when data points are presented (by
design) in a random order.



Online Optimization Formal Setup

Online Optimization: In place of a single function f, we see a
different objective function at each step:

i,...,ft:Rd—ﬂR
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Online Optimization Formal Setup

Online Optimization: In place of a single function f, we see a
different objective function at each step:

f1,...,ftZRd—>R

.
!

- At each step, first pick (play) a parameter vectM.
- Then are told f; and incur cost f;(61).
- Goal: Minimize total cost 321, fi(61)).

T
No assumptions on ho@re related to each other!



Online Optimization Example

Ul design via online optimization.

\{ AddtoCart B

- Parameter vector\ﬁ”:_some encoding of the layout at step i.
- Functions fi, ..., f: fi(01) = 1if user does not click ‘add to cart’
and £;(A") = 0 if they do click. -
——

- Want to maximize number of purchases. l.e., minimize

i fi(60)




Online Optimization Example

Home pricing tools. = 9,

linear model
(%,6)

) $275,000

X = [#baths, #beds, #floors ...]
T

- Parameter vector §0): coefficients of linear model at step i.
oz

. -
- Functions fi,....fi: f;(61) :%(H(‘)‘f price;)? revealed when home;

AR Ay

is listed or sold. Px,gszq,L PAa_

- Want to minimize total squared error 3__, f;(61) (same as
classic least squares regression).




In normal optimization, we seekg&l;atisfying: 1({5) _ 1(*(94% 6,

A —

_i@') < mgiﬂf(@) +e€



In normal optimization, we seek § satisfying:

f(A) < minf(0) + €

| .
In online optimization we will ask for the same. (30#”“”‘\ d\r\(\\‘\"
PAR 'Y VIR =

t _ t t 4 NPSESVSS
Y Si(D) <min}y fi(@) +e=D fi(67) +e
= A E
_eis called the regret.
.



In normal optimization, we seek § satisfying:

f(A) < minf(0) + €

0

In online optimization we will ask for the same.

t t t
D_AOV) < min} fi(0) + e = 3 fi(67) +
= 0 i =1
e is called the regret.

- This error metric is a bit ‘unfair. Why?



1 B
In normal optimization, we seek § satisfying: £ - ® . 670
o F=(R0 gs
f0) < melnf(H) +e. Q o . 9$:D

INENCDI Y

In online optimization we will ask for the same. 8"9,_)
=

Zf(_(') <m|an, —&-e-Zf (6°7) +e

=1 o_ﬂc =1

e is called the regrft. mxwﬁ ' i((&) < fp OR}

- This error metric is a bit ‘unfair. Why?

onli~
- Comparing online solution to best fixed solution in , o\py,&;ﬂq

hindsight. € can be negative! e 5 Q(@\) Ulyo
. = (-lmg




Online Gradient Descent

Assume that:

 f1,....fr are all convex.

- Each f; is G-Lipschitz (i.e., |[Vfi(6)|, < G for all §.)
. @ —ﬁiﬂ& < R where () is the first vector chosen

glo 187 sR

Sane

A
2



Online Gradient Descent

Assume that:

* f1,...,fr are all convex.
- Each f; is G-Lipschitz (i.e., | Vfi(6)|]. < G for all 4.)
- |60 — 67|, < R where () is the first vector chosen.

Online Gradient Descent

- Set step sizen = R
_ Psiz€n =57
- Fori=1,...,t

- Play 8 and incur cost f;(91)).
G O %ci‘(g(,-)—‘)
/_—/—\



Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
—_—

Lipschitz fi...., fy, OGD initialized with starting point A within

i off ysi i - R .
radlu%_, using step size n = z 7, has regret bounded by:

li £ — j: f,-(eﬁfT < RGVT

i=1

1



Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point 8" within
radius R of 87, using step size n = %, has regret bounded by:

s S Sl
(00 - f,-(ewl < RGE
0= 350 <veds

ret' or ‘no regret’

va

Average regret goes to 0.and t —; . /Sublisear re

algorithm.  _| i3 (5') % ﬁ;@fﬁf <
T v

2
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Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point 8" within

radius R of 97, using step size n = %, has regret bounded by:

lz GBS ]“,-(9*)] < RGVt

Average regret goes to 0 and t — oo. ‘Sublinear regret’ or ‘no regret’
algorithm. No assumptions on fi, ..., f!
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Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi,. . ., fr, OGD initialized With starting point 8" within
radius R of 07, using step size n = G\/, has regret bounded by:

lz GBS ]“,-(9*)] < RGVt

Average regret goes to 0 and t — oo. ‘Sublinear regret’ or ‘no regret’
algorithm. No assumptions on fi, ..., f!

. f ; () _pgoff |12 1 gli+1) _goffy|2
Etep 12: For all i, VA (90)T(00) — gor) < 1= L]0 i
onvexity = Step 1: For all j,

o) — goff||2 — ||g(i+1) — goff||2 G2
o) gy < | 131 I3, 06
\_// 2n 2

1



Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point 8" within

radius R of 97, using step size n = %, has regret bounded by:

[iff(e(")) - iﬁ(e"ff)] < R6VE

i=1

('),goff‘|%7Hg(/ﬂ)f@@‘fu%
2n

Step 1: For all i, f;(01) — f;(°F) < 1

nG*
+ 2

12



Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fy,...,f:, OGD initialized With starting point 8" within
radius R of 97, using step size n = G\/, has regret bounded by:

[iff(e(")) - iﬁ(e"ff)] < R6VE

i=1 =
- =

Step 1: For all i, f;(60)) — (o) < 100N |OTO=0TE | net

t . () _ poff|2 (i+1) _ poff||2 2
[Zﬁ(gm) S eoff]<z||e 7|3 — "+ — 9 ||2+ <)
i=1 i=1

21
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Stochastic Gradient Descent

Recall: Stochastic gradient descent is an efficient offline
optimization method, seeki%vvith

flh) < meinf(e”) +e=f(0")+e

—

13



Stochastic Gradient Descent

Recall: Stochastic gradient descent is an efficient offline
optimization method, seeking § with

flh) < meinf(e”) +e=f(0")+e

Easily analyzed as a special case of online gradient descent!

13



Stochastic Gradient Descent

Assume that: BrT( AS loss
- fis convex and decomposable as f(f) = &@
Jasl o e oot

14



Stochastic Gradient Descent

Assume that:

=, n =,

* fis convex and decomposable as f(0) = >=._, fi(6).
© 8, L(6.X) = 2L, 6Mg(%), v)).

14



Stochastic Gradient Descent

Assume that:

=, n =,

+ fis convex and decomposable as f(9) = >__, fi(6).
© Eg, L(0.X) = XL ((Mg(X), ).
- Each f; is S-Lipschitz (i.e, [|V£;(0)]l. < ¢ for all 6)

G ‘15 rveX .

14



Stochastic Gradient Descent

Assume that:

- fis convex and decomposable as f(f) = Zfﬂf,(e).
- Eg, L(5X)*Z,”1 (M%), 7). (>\?S
- Eachfjis & L|psch|tz (e, [VF(8)], < & for all 4.) \SU\,J«\N ‘
7—‘/ -**)
What does this imply about how Lipschitz f is?

| 7A@ = | gmngqwnz

< &
\mméé/
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Stochastic Gradient Descent

Assume that:
+ fis convex and decomposable as f(8) = 37, fi(f).
+ Eg, L(6,X) = 7L, UMg(%). ).
- Each f; is S-Lipschitz (i.e, |Vf(d)[, < & for all 4.)
- What does this imply about how Lipschitz fis?
- Initialize with 8 satisfying [|§() — 6*||, < R.

14



Stochastic Gradient Descent

Assume that:

-

- fis convex and decomposable as f(§) = Z/: 1i(0).
- Eg, L(é‘ X) = S/, (M%), ).
- Each f; is S-Lipschitz (i.e, |Vf(d)[, < & for all 4.)
What does this imply about how Lipschitzfis?

- Initialize with 80 satisfying ||§() — 6%, < R.
Stochastic Gradient Descent

- Setstep sizen =

s.\”

- Fori=1,...,t

- Pickrandom j; €1,...,n.
- ) = g0 — gy (A0)
-

- Return § = 1320 60)
1



Stochastic Gradient Descent

Stochastic Gradient Descent

'Batch’ Gradient Descent

-10

G+ = ) — . F, (00) vs. G+ = gl) — . TF(GLD))
Note that: E[V; (01))] = 1Vf(61)).

Analysis extenﬁcia{tp any algorithm that takes the gradient step
in expectation (batch GD, randomly quantized, measurement

noise, differentially private GD, etc.) 5




Stochastic Gradient Descent Analysis

Theorem - SGD on Convex Lipschitz Functions: SGD run with

t> Rifz iterations, n = Gi\/f’ and starting point within radius R

of 6*, outputs 4 satisfying: E[f(9)] < f(6*) + e.
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Stochastic Gradient Descent Analysis

Theorem - SGD on Convex Lipschitz Functions: SGD run with

t> Rifz iterations, n = Gi\/f’ and starting point within radius R

of 6*, outputs 4 satisfying: E[f(9)] < f(6*) + e.

Step 1: f(A) — f(0*) < 1 3°1_,[f(6") — f(6*)] (you prove on Pset 5, 2.3)

awrry e

—
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Stochastic Gradient Descent Analysis

Theorem - SGD on Convex Lipschitz Functions: SGD run with

t> Rifz iterations, n = Gi\/f’ and starting point within radius R

of 6*, outputs 4 satisfying: E[f(9)] < f(6*) + e.

Step 1: f(A) — f(0*) < 1321, [f(6") — f(6*)] (you prove on Pset 5, 2.3)
X N
step 2: E[f(9) — f(6)] < & B [ [5,(69) — (6]

| _%p@‘}f(ew e EIRAG]
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Stochastic Gradient Descent Analysis

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> Rifz i G\[, and starting point within radius R

of 8*, outputs 8 satisfying: E[f(9)] < f(6*) + e.

Step 1: f(A) — f(0*) < 1 3°1_,[f(6") — f(6*)] (you prove on Pset 5, 2.3)
step 2: E[f(9) — f(6)] < ¢ -E [ [5,(69) — i (6)]]
step 3: Ef(9) - f(6°)] < § - E [0 15,(69) — £ (67

16



Stochastic Gradient Descent Analysis

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> Rifz i G\[ and starting point within radius R

of 8*, outputs 8 satisfying: E[f(9)] < f(6*) + e.

Step 1: f(A) — f(0*) < 1 3°1_,[f(6") — f(6*)] (you prove on Pset 5, 2.3)
SmpZEW@fﬂwﬂS%E{ZLMMWUfHWW]

step 3: E[f(7) — (6 Hé%-[zmm ~ 567

sepe sy 3o £ v fE] Cee D O
OGwmd

Re. P o o

— 2o

[T,

< 16



SGD vs. GD

Stochastic gradient descent generally makes more iterations
than gradient descent.

Each iteration is much cheaper (by a factor of n).

VZ]C, ) VS. Vf,

17



SGD vs. GD

When f(8) = 31, £(8) and [|Vf(@)]. < &:

\ AR INTAN
o N T CeR
Theorem - SGD: After t > “/terations outputs 4 satisfying:

A"

E[f(9)] < f(67) + e

When | V(8)|l. < G- e Liptia

_~/
Theorem - GD: After t > dﬁ,i/iterations outputs @ satisfying:

() < f(07) +e.

18



SGD vs. GD

When f8) = 57, £(6) and [ 95 @) < " ﬁ;‘*‘i“j@

42 Jp——w’r

Theorem - SGD: After t > © G iterations outputs 8 satisfying:

E[f()] < f(6") + e

N

When (9@, <& << €

Theorem - GD: After t > & iterations outputs 8 satisfying:

f(0) < f(67) + e

IFAD: = IF5(E) +..+ T @l < S 1950 < @ 6

1
7 VL
129 MF‘;
vEe

18



SGD vs. GD

When f(6) = 1L, £(8) and [[Vf,(@)]lz < ¢

Theorem - SGD: After ¢ > R;GZ i

E[f()] < f(6") + e

When [[Vf(#)||, < G:

Theorem - GD: After t > 0 j

f(0) < f(67) + e

IVAO) 2 = IVAEO) + ...+ V@)l < L IVA@)2 <n-£ <6
When would this bound be tight? — [ e (F: f;_: L Q\

18



Questions?
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Course Review
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Randomized Methods

Randomization as a computational resource for massive datasets.
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Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).
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want to learn more.
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Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 614 if you
want to learn more.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.

21



Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

22



Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/¢?)
dimensions while preserving pairwise distances.
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Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/¢?)
dimensions while preserving pairwise distances.

- Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

- In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.
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Continuous Optimization

Foundations of continuous optimization and gradient descent.
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Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.
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Continuous Optimization

Foundations of continuous optimization and gradient descent.
- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization
over a convex constraint set.
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Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization

over a convex constraint set. 4 0vy)j~o &P+ S &D

- Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods. Check

out CS 651 for more.
e
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