COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.
Lecture 24 (Final Lecture!)

- Problem Set 5 can be submitted up to Thursday at 11:59pm.

- Exam is next Wednesday 12/18, from 10:30am-12:30pm in the
Totman Gym.

- Similar format to midterm. Closed book, no calculators.

- I 'am holding exam review office hours this Friday 12/13
10-11:30am in ELab 303 and next Tuesday 12/17 2:30pm-4pm in
LGRC A112.

- It would be really helpful if you could fill out SRTIs for this class.

Last Class: \!

ANV
- Analysis of gradient descent for convex and Lipschitz functions.
— —_—
- Direct extension to constrained optimization via projected
gradient descent. Analysis for convex functions and convex

constraint sets. "’F/(?CCA’\ZSY\ MORS 5 dOSe/\('B (9%

- Motivation for stochastic gradient descent (SGD) for performing
gradient descent at scale.

This Class:

I

- Online optimization and online gradient descent.

. 6

- Analysis of online gradient descent. <;¢5$U\>f‘<»\ 5w\ ;?
ANGIN

- Application to analysis of SGD as a special case. 8)

/\—'—’

Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data

points Mn and labels/observations yi, ..., v, solve:

0" = argmm g,X, Y) = 2376 (X))
GeRrd — VN,
) er - j=1 lof)()f\“vwv“*d@/r]—
The gradient of L(6,X) has one component per data point so can be
i S LAY,
very expensive to compute.

Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data
points Xi,...,X, and labels/observations y4, ..., y, solve:

g = argmin L(9 X,y

(M%),
ferd Z‘é&j%

The gradient of L(§, X) has one component per data point so can be
very expensive to compute.

Solution: Update using just a single data point, or a small batch of
data points per iteration.

- If the data point is chosen uniformly at random, the sampled
gradient is correct in expectation.

ZW Ma()),) b By [V M4, v = “.wm.

i=j

- The key idea behind stochastic gradient descent, gSGD).

Online Gradient Descent

SGD is closely related to online gradient descent.

Online Gradient Descent

SGD is closely related to online gradient descent.
In reality many learning problems are online.
- Websites optimize ads or recommendations to show users,
given continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn
from mistakes over time.

Online Gradient Descent

SGD is closely related to online gradient descent.
In reality many learning problems are online.
- Websites optimize ads or recommendations to show users,
given continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn
from mistakes over time.

Want to minimize some global loss L(f, X), when data points are
presented in an online fashion X;, X, ..., X, (like in streaming
algorithms)

Online Gradient Descent

SGD is closely related to online gradient descent.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users,
given continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn
from mistakes over time.

Want to minimize some global loss L(f, X), when data points are
presented in an online fashion X;, X, ..., X, (like in streaming
algorithms)

Will view SGD as a special case: when data points are presented (by
design) in a random order.

Online Optimization Formal Setup

Online Optimization: In place of a single function f, we see a
different objective function at each step:

i,...,ft:Rd—ﬂR

—_—

Online Optimization Formal Setup

Online Optimization: In place of a single function f, we see a
different objective function at each step:

f1,...,ftZRd—>R

.
!

- At each step, first pick (play) a parameter vectM.
- Then are told f; and incur cost f;(61).
- Goal: Minimize total cost 321, fi(61)).

T
No assumptions on ho@re related to each other!

Online Optimization Example

Ul design via online optimization.

\{ AddtoCart B

- Parameter vector\ﬁ”:_some encoding of the layout at step i.
- Functions fi, ..., f: fi(01) = 1if user does not click ‘add to cart’
and £;(A") = 0 if they do click. -
——

- Want to maximize number of purchases. l.e., minimize

i fi(60)

Online Optimization Example

Home pricing tools. = 9,

linear model
(%,6)

) $275,000

X = [#baths, #beds, #floors ...]
T

- Parameter vector §0): coefficients of linear model at step i.
oz

. -
- Functions fi,....fi: f;(61) :%(H(‘)‘f price;)? revealed when home;

AR Ay

is listed or sold. Px,gszq,L PAa_

- Want to minimize total squared error 3__, f;(61) (same as
classic least squares regression).

In normal optimization, we seekg&l;atisfying: 1({5) _ 1(*(94% 6,

A —

_i@') < mgiﬂf(@) +e€

In normal optimization, we seek § satisfying:

f(A) < minf(0) + €

| .
In online optimization we will ask for the same. (30#”“”‘\ d\r\(\\‘\"
PAR 'Y VIR =

t _ t t 4 NPSESVSS
Y Si(D) <min}y fi(@) +e=D fi(67) +e
= A E
_eis called the regret.
.

In normal optimization, we seek § satisfying:

f(A) < minf(0) + €

0

In online optimization we will ask for the same.

t t t
D_AOV) < min} fi(0) + e = 3 fi(67) +
= 0 i =1
e is called the regret.

- This error metric is a bit ‘unfair. Why?

1 B
In normal optimization, we seek § satisfying: £ - ® . 670
o F=(R0 gs
f0) < melnf(H) +e. Q o . 9$:D

INENCDI Y

In online optimization we will ask for the same. 8"9,_)
=

Zf(_(') <m|an, —&-e-Zf (6°7) +e

=1 o_ﬂc =1

e is called the regrft. mxwﬁ ' i((&) < fp OR}

- This error metric is a bit ‘unfair. Why?

onli~
- Comparing online solution to best fixed solution in , o\py,&;ﬂq

hindsight. € can be negative! e 5 Q(@\) Ulyo
. = (-lmg

Online Gradient Descent

Assume that:

 f1,....fr are all convex.

- Each f; is G-Lipschitz (i.e., |[Vfi(6)|, < G for all §.)
. @ —ﬁiﬂ& < R where () is the first vector chosen

glo 187 sR

Sane

A
2

Online Gradient Descent

Assume that:

* f1,...,fr are all convex.
- Each f; is G-Lipschitz (i.e., | Vfi(6)|]. < G for all 4.)
- |60 — 67|, < R where () is the first vector chosen.

Online Gradient Descent

- Set step sizen = R
_ Psiz€n =57
- Fori=1,...,t

- Play 8 and incur cost f;(91)).
G O %ci‘(g(,-)—‘)
/_—/—\

Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
—_—

Lipschitz fi...., fy, OGD initialized with starting point A within

i off ysi i - R .
radlu%_, using step size n = z 7, has regret bounded by:

li £ — j: f,-(eﬁfT < RGVT

i=1

1

Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point 8" within
radius R of 87, using step size n = %, has regret bounded by:

s S Sl
(00 - f,-(ewl < RGE
0= 350 <veds

ret' or ‘no regret’

va

Average regret goes to 0.and t —; . /Sublisear re

algorithm. _| i3 (5') % ﬁ;@fﬁf <
T v

2
Pl

AR

1

Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point 8" within

radius R of 97, using step size n = %, has regret bounded by:

lz GBS]“,-(9*)] < RGVt

Average regret goes to 0 and t — oo. ‘Sublinear regret’ or ‘no regret’
algorithm. No assumptions on fi, ..., f!

1

Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi,. . ., fr, OGD initialized With starting point 8" within
radius R of 07, using step size n = G\/, has regret bounded by:

lz GBS]“,-(9*)] < RGVt

Average regret goes to 0 and t — oo. ‘Sublinear regret’ or ‘no regret’
algorithm. No assumptions on fi, ..., f!

. f ; () _pgoff |12 1 gli+1) _goffy|2
Etep 12: For all i, VA (90)T(00) — gor) < 1= L]0 i
onvexity = Step 1: For all j,

o) — goff||2 — ||g(i+1) — goff||2 G2
o) gy < | 131 I3, 06
_// 2n 2

1

Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point 8" within

radius R of 97, using step size n = %, has regret bounded by:

[iff(e(")) - iﬁ(e"ff)] < R6VE

i=1

('),goff‘|%7Hg(/ﬂ)f@@‘fu%
2n

Step 1: For all i, f;(01) — f;(°F) < 1

nG*
+ 2

12

Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fy,...,f:, OGD initialized With starting point 8" within
radius R of 97, using step size n = G\/, has regret bounded by:

[iff(e(")) - iﬁ(e"ff)] < R6VE

i=1 =
- =

Step 1: For all i, f;(60)) — (o) < 100N |OTO=0TE | net

t . () _ poff|2 (i+1) _ poff||2 2
[Zﬁ(gm) S eoff]<z||e 7|3 — "+ — 9 ||2+ <)
i=1 i=1

21

56 ol e -

- = 7. 2
Mnee -) o

T LN g) e e B r IS
PR il 0 L By~ S S

Stochastic Gradient Descent

Recall: Stochastic gradient descent is an efficient offline
optimization method, seeki%vvith

flh) < meinf(e”) +e=f(0")+e

—

13

Stochastic Gradient Descent

Recall: Stochastic gradient descent is an efficient offline
optimization method, seeking § with

flh) < meinf(e”) +e=f(0")+e

Easily analyzed as a special case of online gradient descent!

13

Stochastic Gradient Descent

Assume that: BrT(AS loss
- fis convex and decomposable as f(f) = &@
Jasl o e oot

14

Stochastic Gradient Descent

Assume that:

=, n =,

* fis convex and decomposable as f(0) = >=._, fi(6).
© 8, L(6.X) = 2L, 6Mg(%), v)).

14

Stochastic Gradient Descent

Assume that:

=, n =,

+ fis convex and decomposable as f(9) = >__, fi(6).
© Eg, L(0.X) = XL ((Mg(X),).
- Each f; is S-Lipschitz (i.e, [|V£;(0)]l. < ¢ for all 6)

G ‘15 rveX .

14

Stochastic Gradient Descent

Assume that:

- fis convex and decomposable as f(f) = Zfﬂf,(e).
- Eg, L(5X)*Z,”1 (M%), 7). (>\?S
- Eachfjis & L|psch|tz (e, [VF(8)], < & for all 4.) \SU\,J«\N ‘
7—‘/ -**)
What does this imply about how Lipschitz f is?

| 7A@ = | gmngqwnz

< &
\mméé/

14

Stochastic Gradient Descent

Assume that:
+ fis convex and decomposable as f(8) = 37, fi(f).
+ Eg, L(6,X) = 7L, UMg(%).).
- Each f; is S-Lipschitz (i.e, |Vf(d)[, < & for all 4.)
- What does this imply about how Lipschitz fis?
- Initialize with 8 satisfying [|§() — 6*||, < R.

14

Stochastic Gradient Descent

Assume that:

-

- fis convex and decomposable as f(§) = Z/: 1i(0).
- Eg, L(é‘ X) = S/, (M%),).
- Each f; is S-Lipschitz (i.e, |Vf(d)[, < & for all 4.)
What does this imply about how Lipschitzfis?

- Initialize with 80 satisfying ||§() — 6%, < R.
Stochastic Gradient Descent

- Setstep sizen =

s.\”

- Fori=1,...,t

- Pickrandom j; €1,...,n.
-) = g0 — gy (A0)
-

- Return § = 1320 60)
1

Stochastic Gradient Descent

Stochastic Gradient Descent

'Batch’ Gradient Descent

-10

G+ =) — . F, (00) vs. G+ = gl) — . TF(GLD))
Note that: E[V; (01))] = 1Vf(61)).

Analysis extenﬁcia{tp any algorithm that takes the gradient step
in expectation (batch GD, randomly quantized, measurement

noise, differentially private GD, etc.) 5

Stochastic Gradient Descent Analysis

Theorem - SGD on Convex Lipschitz Functions: SGD run with

t> Rifz iterations, n = Gi\/f’ and starting point within radius R

of 6*, outputs 4 satisfying: E[f(9)] < f(6*) + e.

16

Stochastic Gradient Descent Analysis

Theorem - SGD on Convex Lipschitz Functions: SGD run with

t> Rifz iterations, n = Gi\/f’ and starting point within radius R

of 6*, outputs 4 satisfying: E[f(9)] < f(6*) + e.

Step 1: f(A) — f(0*) < 1 3°1_,[f(6") — f(6*)] (you prove on Pset 5, 2.3)

awrry e

—

16

Stochastic Gradient Descent Analysis

Theorem - SGD on Convex Lipschitz Functions: SGD run with

t> Rifz iterations, n = Gi\/f’ and starting point within radius R

of 6*, outputs 4 satisfying: E[f(9)] < f(6*) + e.

Step 1: f(A) — f(0*) < 1321, [f(6") — f(6*)] (you prove on Pset 5, 2.3)
X N
step 2: E[f(9) — f(6)] < & B [[5,(69) — (6]

| _%p@‘}f(ew e EIRAG]

16

Stochastic Gradient Descent Analysis

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> Rifz i G\[, and starting point within radius R

of 8*, outputs 8 satisfying: E[f(9)] < f(6*) + e.

Step 1: f(A) — f(0*) < 1 3°1_,[f(6") — f(6*)] (you prove on Pset 5, 2.3)
step 2: E[f(9) — f(6)] < ¢ -E [[5,(69) — i (6)]]
step 3: Ef(9) - f(6°)] < § - E [0 15,(69) — £ (67

16

Stochastic Gradient Descent Analysis

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> Rifz i G\[and starting point within radius R

of 8*, outputs 8 satisfying: E[f(9)] < f(6*) + e.

Step 1: f(A) — f(0*) < 1 3°1_,[f(6") — f(6*)] (you prove on Pset 5, 2.3)
SmpZEW@fﬂwﬂS%E{ZLMMWUfHWW]

step 3: E[f(7) — (6 Hé%-[zmm ~ 567

sepe sy 3o £ v fE] Cee D O
OGwmd

Re. P o o

— 2o

[T,

< 16

SGD vs. GD

Stochastic gradient descent generally makes more iterations
than gradient descent.

Each iteration is much cheaper (by a factor of n).

VZ]C,) VS. Vf,

17

SGD vs. GD

When f(8) = 31, £(8) and [|Vf(@)]. < &:

\ AR INTAN
o N T CeR
Theorem - SGD: After t > “/terations outputs 4 satisfying:

A"

E[f(9)] < f(67) + e

When | V(8)|l. < G- e Liptia

_~/
Theorem - GD: After t > dﬁ,i/iterations outputs @ satisfying:

() < f(07) +e.

18

SGD vs. GD

When f8) = 57, £(6) and [95 @) < " ﬁ;‘*‘i“j@

42 Jp——w’r

Theorem - SGD: After t > © G iterations outputs 8 satisfying:

E[f()] < f(6") + e

N

When (9@, <& << €

Theorem - GD: After t > & iterations outputs 8 satisfying:

f(0) < f(67) + e

IFAD: = IF5(E) +..+ T @l < S 1950 < @ 6

1
7 VL
129 MF‘;
vEe

18

SGD vs. GD

When f(6) = 1L, £(8) and [[Vf,(@)]lz < ¢

Theorem - SGD: After ¢ > R;GZ i

E[f()] < f(6") + e

When [[Vf(#)||, < G:

Theorem - GD: After t > 0 j

f(0) < f(67) + e

IVAO) 2 = IVAEO) + ...+ V@)l < L IVA@)2 <n-£ <6
When would this bound be tight? — [e (F: f;_: L Q\

18

Questions?

19

Course Review

20

Randomized Methods

Randomization as a computational resource for massive datasets.

21

Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

21

Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 614 if you
want to learn more.

21

Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 614 if you
want to learn more.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.

21

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

22

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/¢?)
dimensions while preserving pairwise distances.

22

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/¢?)
dimensions while preserving pairwise distances.

- Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

22

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/¢?)
dimensions while preserving pairwise distances.

- Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

22

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/¢?)
dimensions while preserving pairwise distances.

- Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

22

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/¢?)
dimensions while preserving pairwise distances.

- Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

- In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.

22

Continuous Optimization

Foundations of continuous optimization and gradient descent.

23

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

23

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

23

Continuous Optimization

Foundations of continuous optimization and gradient descent.
- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization
over a convex constraint set.

23

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization

over a convex constraint set. 4 0vy)j~o &P+ S &D

- Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods. Check

out CS 651 for more.
e

23

