COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024. Lecture 24 (Final Lecture!)

- Problem Set 5 can be submitted up to Thursday at 11:59pm.
- \cdot Exam is next Wednesday 12/18, from 10:30am-12:30pm in the Totman Gym.
- Similar format to midterm. Closed book, no calculators.
- \cdot I am holding exam review office hours this Friday 12/13 10-11:30am in ELab 303 and next Tuesday 12/17 2:30pm-4pm in **LGRC A112.**
- It would be really helpful if you could fll out SRTIs for this class.

Summary

Last Class:

- Analysis of gradient descent for convex and Lipschitz functions. t ¥ -
- Direct extension to constrained optimization via projected gradient descent. Analysis for convex functions and convex gradient descent. Analysis for convex functions and convex
constraint sets. \rightarrow projection mode \sim 0 μ
- Motivation for stochastic gradient descent (SGD) for performing gradient descent at scale.

This Class:

- Online optimization and online gradient descent.
- Analysis of online gradient descent.

(essentially same)

• Application to analysis of SGD as a special case.

Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data points $\underline{\vec{x}}_1, \ldots, \vec{x}_n$ and labels/observations y_1, \ldots, y_n solve: $\vec{\theta}^* = \text{arg min}$ $\vec{\theta} \in \mathbb{R}^d$ $L(\vec{\theta}, X, y) = \sum_{n=1}^{n}$ ࠀ=*j* $\ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$ The gradient of $L(\vec{\theta}, \texttt{X})$ has one component per data point so can be very expensive to compute. $\sum_{\text{min}} \overrightarrow{(\vec{\theta} \times \vec{v})} = \sum_{\alpha}^{\beta}$ $\overrightarrow{\theta} \in \mathbb{R}^d$ \longrightarrow $\overrightarrow{\theta} = \frac{\sum c_i(m_{\theta}(x_i), y_j)}{\log 200}$ $\downarrow_{\theta} \rightarrow \infty$

Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \ldots, \vec{x}_n$ and labels/observations y_1, \ldots, y_n solve:

$$
\vec{\theta}^* = \underset{\vec{\theta} \in \mathbb{R}^d}{\arg \min} L(\vec{\theta}, X, y) = \sum_{j=1}^n \underbrace{\ell(M_{\vec{\theta}}(\vec{x}_j), y_j)}.
$$

The gradient of $L(\vec{\theta}, X)$ has one component per data point so can be very expensive to compute.

Solution: Update using just a single data point, or a small batch of data points per iteration.

 \cdot If the data point is chosen uniformly at random, the sampled gradient is correct in expectation.

$$
\vec{\nabla}L(\vec{\theta},X)=\sum_{i=j}^n \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_j),y_j)\nrightarrow{\text{E}_{j\sim[n]}[\vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_j),y_j)]\nabla}=\frac{1}{n}\cdot \vec{\nabla}L(\vec{\theta},X).
$$

 \cdot The key idea behind **stochastic gradient descent** $\text{\text{(SGD)}}$.

SGD is closely related to online gradient descent.

SGD is closely related to online gradient descent.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam flters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classifcation systems, learn from mistakes over time.

SGD is closely related to online gradient descent.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam flters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classifcation systems, learn from mistakes over time.

Want to minimize some global loss $L(\vec{\theta}, X)$, when data points are presented in an online fashion $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$ (like in streaming algorithms)

SGD is closely related to online gradient descent.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam flters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classifcation systems, learn from mistakes over time.

Want to minimize some global loss $L(\vec{\theta}, X)$, when data points are presented in an online fashion $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$ (like in streaming algorithms)

Will view SGD as a special case: when data points are presented (by design) in a random order.

Online Optimization: In place of a single function *f*, we see a different objective function at each step:

$$
\underbrace{f_1,\ldots,f_t}:\mathbb{R}^d\to\mathbb{R}
$$

Online Optimization: In place of a single function *f*, we see a different objective function at each step:

$$
f_1,\ldots,f_t:\mathbb{R}^d\to\mathbb{R}
$$

- \cdot At each step, first pick (play) a parameter vect<u>or $\vec{\theta}^{(i)}$.</u>
- \cdot Then are told f_i and incur cost $f_i(\vec{\theta}^{(i)})$.
- Goal: Minimize total cost $\sum_{i=1}^t f_i(\vec{\theta}^{(i)})$.

No assumptions on how f_1, \ldots, f_t are related to each other!

Online Optimization Example

UI design via online optimization.

- \cdot Parameter vect<u>or $\vec{\theta}^{(i)}$:</u> some encoding of the layout at step *i.*
- Functions f_1, \ldots, f_t : $f_i(\vec{\theta}^{(i)}) = 1$ if user does not click 'add to cart'
and $f_i(\vec{\theta}^{(i)}) = 0$ if they do click.
Want to maximize number of purchases. I.e., minimize
 $\sum_{i=1}^t f_i(\vec{\theta}^{(i)})$ and $f_i(\vec{\theta}^{(i)}) = 0$ if they do click.
- Want to maximize number of purchases. I.e., minimize $\sum_{i=1}^t f_i(\vec{\theta}^{(i)})$

Online Optimization Example

 $\vec{x} = [\text{\#baths}, \text{\#beds}, \text{\#floors} ...]$

- \cdot Parameter vector $\vec{\theta}^{(i)}$: coefficients of linear model at step *i*. \cdot Functions f_1, \ldots, f_t : $f_i(\vec{\theta}^{(i)}) = (\vec{\theta}^{(i)1} \cap \textit{price}_i)^2$ revealed when $home_i$ Functions f_1, \ldots, f_t : $f_i(\vec{\theta}^{(i)}) = (\vec{\theta}^{(i)} - price_i)^2$ revea

is listed or sold.
 $\begin{bmatrix} x \end{bmatrix}$ and $\begin{bmatrix} x \end{bmatrix}$ and $\begin{bmatrix} y \end{bmatrix}$ and
	- \cdot Want to minimize total squared error $\sum_{i=1}^t f_i(\vec{\theta}^{(i)})$ (same as classic least squares regression).

In normal optimization, we seek $\hat{\theta}$ satisfying:

 $f(\hat{\phi}) - f(\theta^*) \leq \epsilon$

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.
$$

In online optimization we will ask for the same.

The optimization we will ask for the same.
$$
\oint_{\mathcal{L}_{\mathcal{D}}(f)} \mathcal{L}_{\mathcal{D}}(f) d\mathcal{L}_{\mathcal{D}}(f)
$$

 $\sqrt{2}$

offline

al

 ϵ is called the regret.

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.
$$

In online optimization we will ask for the same.

$$
\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)}) \le \min_{\vec{\theta}} \sum_{i=1}^{t} f_i(\vec{\theta}) + \epsilon = \sum_{i=1}^{t} f_i(\vec{\theta}^{off}) + \epsilon
$$

- ϵ is called the regret.
	- This error metric is a bit 'unfair'. Why?

 ϵ is

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.
$$

In online optimization we will ask for the same.

$$
\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)}) \le \min_{\vec{\theta}} \sum_{i=1}^{t} f_i(\vec{\theta}) + \epsilon = \sum_{i=1}^{t} f_i(\vec{\theta}^{off}) + \epsilon
$$
\ncalled the **regret**.

- This error metric is a bit 'unfair'. Why?
- Comparing online solution to best fxed solution in hindsight. ϵ can be negative! $\overbrace{ }$ best fixed so. &iaoiGkI:.emstrong"

ࠈ

 $f_1 = 8^2$ 9.50 $f_2 = (R_1)^2 \theta_2^2$ $f_2:Q^2$, $Q_i:D$ $F_3 = (8-1)$
 $F_4 = (8-1)$

 Q^{eff} :

Assume that:

- \cdot f_1, \ldots, f_t are all convex.
- Each f_i is *G-*Lipschitz (i.e., $\|\vec{\nabla} f_i(\vec{\theta}) \|_2 \leq G$ for all $\vec{\theta}$.) $\frac{\partial f_i}{\partial \hat{f}_{i}}$ is G-Lipschitz (i.e., $\|\vec{\nabla} f_i(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.)
- $\cdot \frac{\|\vec{\theta}^{(1)} \vec{\theta}^{off}\|_2 \leq R}$ where $\theta^{(1)}$ is the first vector chosen. $\sum_{i=1}^n\frac{1}{i}$ $0^{(1)}27$ 10^{0} $(1)25$

}

Assume that:

- \cdot f_1, \ldots, f_t are all convex.
- Each f_i is *G*-Lipschitz (i.e., $\|\vec{\nabla} f_i(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.)
- \cdot $\|\vec{\theta}^{(1)} \vec{\theta}^{off}\|_2 \leq R$ where $\theta^{(1)}$ is the first vector chosen.

Online Gradient Descent

• Set step size
$$
\underline{\eta} = \frac{R}{G\sqrt{t}}
$$
.

- For $i = 1, \ldots, t$
	- Play $\vec{\theta}^{(i)}$ and incur cost $f_i(\vec{\theta}^{(i)})$. $\frac{dy}{dx}$ and incur cost
	- $\cdot \vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \cdot \vec{\nabla} f_{i}(\vec{\theta}^{(i)})$

Theorem – OGD on Convex Lipschitz Functions: For convex *G*-Lipsch<u>itz *f*₁, ...</u>, *f*_t, OGD initialized with starting point $\theta^{(1)}$ within radiu<u>s R of θ^{off} </u>, using step size $\eta = \frac{R}{6\sqrt{t}}$, has regret bounded by:

$$
\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{\phi})\right]^2 \leq RG\sqrt{t}
$$

Theorem – OGD on Convex Lipschitz Functions: For convex *G*-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius *R* of θ^{off} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by: *G* √*t* $\int \frac{t}{\sqrt{2}}$ ࠀ=*i* $f_i(\theta^{(i)}) - \sum^t$ ࠀ=*i fi*(θ∗) $\left\{\leq RG\sqrt{t}\right\}$ $D(e^{t})$ $\begin{bmatrix} t & t & 1 \end{bmatrix}$ $\begin{bmatrix} F & 0 \end{bmatrix}$ →

Average regret goes to ߿ and *t* → ∞. 'Sublinear regret' or 'no regret' algorithm. France to bland $t \rightarrow \infty$. Subtitual regret
 $\frac{1}{t} \leq f'_{x}(0) - \frac{1}{t} \leq f'_{x}(0^{0.06}) \leq Rf_{x}(0)$

Theorem – OGD on Convex Lipschitz Functions: For convex *G*-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius *R* of θ^{off} , using step size $\eta=\frac{R}{G\sqrt{t}}$, has regret bounded by:

$$
\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^*)\right] \leq RG\sqrt{t}
$$

Average regret goes to 0 and $t \to \infty$. 'Sublinear regret' or 'no regret' algorithm. No assumptions on f_1, \ldots, f_t !

Theorem – OGD on Convex Lipschitz Functions: For convex *G*-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius *R* of θ^{off} , using step size $\eta=\frac{R}{G\sqrt{t}}$, has regret bounded by:

$$
\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^*)\right] \leq RG\sqrt{t}
$$

Average regret goes to 0 and $t \to \infty$. 'Sublinear regret' or 'no regret' algorithm. No assumptions on f_1, \ldots, f_t !

Step 1.1: For all *i*, $\nabla f_i(\theta^{(i)})^T(\theta^{(i)} - \theta^{off}) \leq \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Convexity ⇒ **Step 1:** For all *i*,
 $\underline{f_i(\theta^{(i)})} - f_i(\theta^{off}) \leq \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\$ Convexity =⇒ Step 1: For all *i*,

$$
\underbrace{f_i(\theta^{(i)})-f_i(\theta^{off})}_{2\eta}\leq \frac{\|\theta^{(i)}-\theta^{off}\|_2^2-\|\theta^{(i+1)}-\theta^{off}\|_2^2}{2\eta}+\frac{\eta G^2}{2}.
$$

Theorem – OGD on Convex Lipschitz Functions: For convex *G*-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius *R* of θ^{off} , using step size $\eta=\frac{R}{G\sqrt{t}}$, has regret bounded by:

$$
\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \leq RG\sqrt{t}
$$

Step 1: For all *i*,
$$
f_i(\theta^{(i)}) - f_i(\theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}
$$

Theorem – OGD on Convex Lipschitz Functions: For convex *G*-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius *R* of θ^{off} , using step size $\eta=\frac{R}{G\sqrt{t}}$, has regret bounded by:

$$
\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \leq RG\sqrt{t}
$$

 $\textsf{Step 1:} \text{ For all } i, f_i(\theta^{(i)}) - f_i(\theta^{off}) \leq \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2} \implies$

Recall: Stochastic gradient descent is an efficient offline optimization method, seeking $\hat{\theta}$ with
 $f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon =$

$$
f(\hat{\theta}) \le \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon = f(\vec{\theta}^*) + \epsilon.
$$

Recall: Stochastic gradient descent is an effcient offine optimization method, seeking $\hat{\theta}$ with

$$
f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon = f(\vec{\theta}^*) + \epsilon.
$$

Easily analyzed as a special case of online gradient descent!

Assume that:
\n
$$
f_n(\vec{n}) > \log S
$$
\n
$$
\cdot \underline{f}
$$
 is convex and decomposable as $f(\vec{\theta}) = \frac{\sum_{j=1}^{n} f_j(\vec{\theta})}{\log S}$.

Assume that:

 \cdot f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^n f_j(\vec{\theta}).$

• E.g.,
$$
L(\vec{\theta}, X) = \sum_{j=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).
$$

Assume that:

 \cdot f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^n f_j(\vec{\theta}).$

• E.g.,
$$
L(\vec{\theta}, X) = \sum_{j=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j)
$$
.

• Each f_j is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.)
 $\left\{\begin{array}{cc} \uparrow \\ \uparrow \end{array}\right\}$ i \uparrow anvex.

Assume that:

 \cdot f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^n f_j(\vec{\theta}).$

• E.g.,
$$
L(\vec{\theta}, X) = \sum_{j=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).
$$

- Each f_j is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.) $\frac{n}{\sqrt{2}}$ - $\frac{1}{n}$ - $\frac{1}{n}$ - $\frac{1}{n}$
	- What does this imply about how Lipschitz *f* is? \overline{z}

$$
\|\nabla F(\theta)\|_{2} = \|\sum_{j=1}^{n} \nabla f_{j}(\theta)\|_{2} \leq \sum_{j=1}^{n} \|\nabla f_{j}(\theta)\|_{2}
$$

$$
\leq \sum_{j=1}^{n} \frac{6}{n} \leq 6
$$

 $\frac{1}{2}$

Assume that:

- \cdot f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^n f_j(\vec{\theta}).$
	- E.g., $L(\vec{\theta}, X) = \sum_{j=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j)$.
- Each f_j is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.)
	- What does this imply about how Lipschitz *f* is?
- Initialize with $\theta^{(1)}$ satisfying $\|\vec{\theta}^{(1)} \vec{\theta}^*\|_2 < R$.

Assume that:

- \cdot f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^n f_j(\vec{\theta}).$
	- E.g., $L(\vec{\theta}, X) = \sum_{j=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j)$.
- Each f_j is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.)
	- What does this imply about how Lipschitz *f* is?
- Initialize with $\theta^{(1)}$ satisfying $\|\vec{\theta}^{(1)} \vec{\theta}^*\|_2 < R$.

Stochastic Gradient Descent

• Set step size $\eta = \frac{R}{G\sqrt{t}}$.

• For
$$
i = 1, ..., t
$$

\n• Pick random $j_i \in 1, ..., n$.
\n• $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \cdot \vec{\nabla} f_{j_i}(\vec{\theta}^{(i)})$

• Return $\hat{\theta} = \frac{1}{t} \sum_{i=1}^{t} \vec{\theta}^{(i)}$

 $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \cdot \vec{\nabla} f_{j_i}(\vec{\theta}^{(i)})$ vs. $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \cdot \vec{\nabla} f(\vec{\theta}^{(i)})$ Note that: $\mathbb{E}[\vec{\nabla} f_{j_i}(\vec{\theta}^{(i)})] = \frac{1}{n} \vec{\nabla} f(\vec{\theta}^{(i)})$.

Analysis extends to any algorithm that takes the gradient step in expectation (batch GD, randomly quantized, measurement noise, differentially private GD, etc.) $\frac{1}{15}$

Stochastic Gradient Descent Analysis

Theorem – SGD on Convex Lipschitz Functions: SGD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G \sqrt{t}}$, and starting point within radius R of θ^* , outputs $\hat{\theta}$ satisfying: $\underline{\mathbb{E}[f(\hat{\theta})]} \le f(\theta^*) + \epsilon$.

Stochastic Gradient Descent Analysis

Theorem – SGD on Convex Lipschitz Functions: SGD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G \sqrt{t}}$, and starting point within radius R of θ^* , outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Step 1: $f(\hat{\theta}) - f(\theta^*) \leq \frac{1}{t} \sum_{i=1}^t [f(\theta^{(i)}) - f(\theta^*)]$ (you prove on Pset 5, 2.3) l'avery italie.

Theorem – SGD on Convex Lipschitz Functions: SGD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G \sqrt{t}}$, and starting point within radius R of θ^* , outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Step 1:
$$
f(\hat{\theta}) - f(\theta^*) \leq \frac{1}{t} \sum_{i=1}^t [f(\theta^{(i)}) - f(\theta^*)]
$$
 (you prove on *Best* 5, 2.3)
\nStep 2: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \mathbb{E} \left[\sum_{i=1}^t [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^*)] \right].$
\n $\sum_{i=1}^t f'(\theta^*) - f(\theta^*) = \text{Re}[f'_{j_i}(\theta^*) - f'_{j_i}(\theta^*)]$

Theorem – SGD on Convex Lipschitz Functions: SGD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G \sqrt{t}}$, and starting point within radius R of θ^* , outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Step 1: $f(\hat{\theta}) - f(\theta^*) \leq \frac{1}{t} \sum_{i=1}^t [f(\theta^{(i)}) - f(\theta^*)]$ (you prove on Pset 5, 2.3) Step 2: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^t [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^*)]\right].$ $\textsf{Step 3: } \mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^t [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^{off})]\right].$

Theorem – SGD on Convex Lipschitz Functions: SGD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G \sqrt{t}}$, and starting point within radius R of θ^* , outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Step 1:
$$
f(\hat{\theta}) - f(\theta^*) \leq \frac{1}{t} \sum_{i=1}^t [f(\theta^{(i)}) - f(\theta^*)]
$$
 (you prove on *Best* 5, 2.3)
\nStep 2: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E} \left[\sum_{i=1}^t [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^*)] \right].$
\nStep 3: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E} \left[\sum_{i=1}^t [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^{off})] \right].$
\nStep 4: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E} \left[\sum_{i=1}^t [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^{off})] \right].$
\nStep 4: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E} \left[\sum_{i=1}^t [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^{off})] \right]$
\n $\frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}}{t} \cdot \frac{1}{t} \cdot \frac{1}{$

Stochastic gradient descent generally makes more iterations than gradient descent.

Each iteration is much cheaper (by a factor of *n*).

$$
\vec{\nabla} \sum_{j=1}^n f_j(\vec{\theta}) \text{ vs. } \vec{\nabla} f_j(\vec{\theta})
$$

SGD vs. GD

SGD vs. GD

When
$$
f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})
$$
 and $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$:
\n $\begin{array}{c}\n\zeta \to \Gamma \text{ is given by } \Gamma \text{ is given by } \mathcal{F} \text{ is given by } \$

$$
\|\vec{\nabla} f(\vec{\theta})\|_2 = \|\vec{\nabla} f_1(\vec{\theta}) + \ldots + \vec{\nabla} f_n(\vec{\theta})\|_2 \le \sum_{j=1}^n \|\vec{\nabla} f_j(\vec{\theta})\|_2 \le n \cdot \frac{G}{n} \cdot G.
$$
\n
$$
\overbrace{G} \qquad \qquad \forall f_1 \qquad \qquad \forall f_2 \qquad \qquad \forall f_3 \qquad \qquad \forall f_4 \qquad \qquad \qquad \forall f_5 \qquad \qquad \forall f_6 \qquad \qquad \forall f_7 \qquad \qquad \forall f_8 \qquad \qquad \forall f_9 \qquad \qquad \forall f_1 \qquad \qquad \forall f_2 \qquad \qquad \forall f_3 \qquad \qquad \forall f_4 \qquad \qquad \forall f_5 \qquad \qquad \forall f_6 \qquad \qquad \forall f_7 \qquad \qquad \forall f_8 \qquad \qquad \forall f_9 \qquad \qquad \forall f_9 \qquad \qquad \forall f_1 \qquad \qquad \forall f_1 \qquad \qquad \forall f_2 \qquad \qquad \forall f_3 \qquad \qquad \forall f_4 \qquad \qquad \forall f_5 \qquad \qquad \forall f_1 \qquad \qquad \forall f_1 \qquad \qquad \forall f_2 \qquad \qquad \forall f_3 \qquad \qquad \forall f_4 \qquad \qquad \forall f_5 \qquad \qquad \forall f_6 \qquad \qquad \forall f_7 \qquad \qquad \forall f_8 \qquad \qquad \forall f_9 \
$$

ࠇࠀ

SGD vs. GD

When
$$
f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})
$$
 and $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$:

<code>Theorem – SGD:</code> After $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations outputs $\widehat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon.$

When $\|\vec{\nabla}f(\vec{\theta})\|_2 < \bar{G}$:

<code>Theorem – GD:</code> <code>After</code> $t \geq \frac{R^2 \bar{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $f(\hat{\theta}) < f(\theta^*) + \epsilon$.

 $\|\vec{\nabla}f(\vec{\theta})\|_2 = \|\vec{\nabla}f_1(\vec{\theta}) + \ldots + \vec{\nabla}f_n(\vec{\theta})\|_2 \le \sum_{j=1}^n \|\vec{\nabla}f_j(\vec{\theta})\|_2 \le n \cdot \frac{G}{n} \le G.$ When would this bound be tight? $-\sqrt{2}$ $-\sqrt{2}$ fraction fr

Questions?

Course Review

Randomization as a computational resource for massive datasets.

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at massive scale – set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at massive scale – set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).
- Just the tip of the iceberg on randomized streaming/sketching/hashing algorithms. Check out 614 if you want to learn more.

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at massive scale – set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).
- Just the tip of the iceberg on randomized streaming/sketching/hashing algorithms. Check out 614 if you want to learn more.
- In the process covered probability/statistics tools that are very useful beyond algorithm design: concentration inequalities, higher moment bounds, law of large numbers, central limit theorem, linearity of expectation and variance, union bound, median as a robust estimator.

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL lemma: compression from *any* d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.

- Started with randomized dimensionality reduction and the JL lemma: compression from *any* d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.

- Started with randomized dimensionality reduction and the JL lemma: compression from *any* d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).

- Started with randomized dimensionality reduction and the JL lemma: compression from *any* d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).
- Spectral graph theory nonlinear dimension reduction and spectral clustering for community detection.

- Started with randomized dimensionality reduction and the JL lemma: compression from *any* d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).
- Spectral graph theory nonlinear dimension reduction and spectral clustering for community detection.
- In the process covered linear algebraic tools that are very broadly useful in ML and data science: eigendecomposition, singular value decomposition, projection, norm transformations.

Foundations of continuous optimization and gradient descent.

• Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).
- Simple extension to projected gradient descent for optimization over a convex constraint set.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).
- Simple extension to projected gradient descent for optimization over a convex constraint set. \overline{f} online \overline{f} \overline{f} \overline{f}
- Lots that we didn't cover: online and stochastic gradient descent, accelerated methods, adaptive methods, second order methods (quasi-Newton methods), practical considerations. Gave mathematical tools to understand these methods. Check out CS 651 for more.