COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2024. Lecture 23

Logistics

- Problem Set 5 can be turned in up to 12/12 (next Thursday) at 11:59pm with no penalty. No extensions will be granted beyond this. The challenge problem is optional extra credit.
- · After today you will be able to solve every problem on it.
- · Additional final review office hours will be posted soon.

Summary

Last Class:

- · Multivariable calculus review
- Introduction to gradient descent. Motivation as a greedy algorithm.
- Convex functions
- Lipschitz functions

This Class:

- Analysis of gradient descent for convex Lipschitz functions
- Extension to projected gradient descent for constrained optimization.
- Start on online/stochastic gradient descent?

Well-Behaved Functions

Definition – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0,1]$:

$$(1 - \lambda) \cdot f(\vec{\theta}_1) + \lambda \cdot f(\vec{\theta}_2) \ge f((1 - \lambda) \cdot \vec{\theta}_1 + \lambda \cdot \vec{\theta}_2)$$

Corollary – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$f(\vec{\theta}_2) - f(\vec{\theta}_1) \ge \vec{\nabla} f(\vec{\theta}_1)^{\mathsf{T}} \left(\vec{\theta}_2 - \vec{\theta}_1 \right)$$

Definition – Lipschitz Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is G-Lipschitz if $\|\vec{\nabla} f(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.

4

GD Analysis – Convex Functions

Assume that:

- f is convex.
- f is G-Lipschitz.
- $\|\vec{\theta}_1 \vec{\theta}_*\|_2 \le R$ where $\vec{\theta}_1$ is the initialization point.

Gradient Descent

- Choose some initialization $\vec{\theta_1}$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t 1
 - $\cdot \vec{\theta}_{i+1} = \vec{\theta}_i \eta \vec{\nabla} f(\vec{\theta}_i)$
- Return $\hat{\theta} = \arg\min_{\vec{\theta}_1, \dots, \vec{\theta}_t} f(\vec{\theta}_i)$.

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \leq \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Visually:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Formally:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i, f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}.$$

Step 1.1:
$$\vec{\nabla} f(\vec{\theta_i})^{\mathsf{T}} (\vec{\theta_i} - \vec{\theta_*}) \leq \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2} \implies \text{Step 1 by convexity.}$$

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2} \Longrightarrow$

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$
.

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon.$$

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$
.

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$
.

Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \arg\min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0, 1]$:

$$(1-\lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in \mathcal{S}$$

E.g.
$$S = \{ \vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \le 1 \}.$$

Projected Gradient Descent

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \arg\min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_2$.
- For $S = {\vec{\theta} \in \mathbb{R}^d : ||\vec{\theta}||_2 \le 1}$ what is $P_S(\vec{y})$?
- For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

Projected Gradient Descent

- · Choose some initialization $\vec{\theta}_1$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t 1
 - $\cdot \vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$
 - $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)}).$
- Return $\hat{\theta} = \arg\min_{\vec{\theta_i}} f(\vec{\theta_i})$.

Convex Projections

Projected gradient descent can be analyzed identically to gradient descent!

Theorem – Projection to a convex set: For any convex set $\mathcal{S} \subseteq \mathbb{R}^d$, $\vec{y} \in \mathbb{R}^d$, and $\vec{\theta} \in \mathcal{S}$,

$$||P_{\mathcal{S}}(\vec{y}) - \vec{\theta}||_2 \le ||\vec{y} - \vec{\theta}||_2.$$

Projected Gradient Descent Analysis

Theorem – Projected GD: For convex *G*-Lipschitz function *f*, and convex set *S*, Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius *R* of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}}^{(out)} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i, f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
.

Step 2:
$$\frac{1}{t}\sum_{i=1}^{t} f(\vec{\theta_i}) - f(\vec{\theta_*}) \leq \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \implies$$
 Theorem.

Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels/observations y_1, \dots, y_n solve:

$$\vec{\theta}^* = \arg\min_{\vec{\theta} \in \mathbb{R}^d} L(\vec{\theta}, \mathbf{X}, y) = \sum_{j=1}^n \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

The gradient of $L(\vec{\theta}, X)$ has one component per data point:

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

When *n* is large this is very expensive to compute!

Training a neural network on ImageNet would require n=14 million back propagations! ... per iteration of GD.

Gradient Descent At Scale

Solution: Update using just a single data point, or a small batch of data points per iteration.

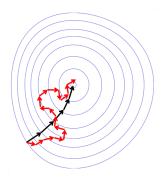
- Looking at a single data point gives you a coarse, but still useful cue on how to improve your model.
- If the data point is chosen uniformly at random, the sampled gradient is correct in expectation.

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{i=j}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j}) \rightarrow \mathbb{E}_{j \sim [n]}[\vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j})] = \frac{1}{n} \cdot \vec{\nabla} L(\vec{\theta}, \mathbf{X}).$$

· The key idea behind stochastic gradient descent (SGD).

Stochastic Gradient Descent

Stochastic gradient descent takes more, but much cheaper steps than gradient descent.



$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \cdot \vec{\nabla} L(\vec{\theta}^{(i)}, \mathbf{X}) \text{ vs. } \vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \cdot \vec{\nabla} \ell(M_{\vec{\theta}^{(i)}}(\vec{X}_j), y_j)$$

Online Gradient Descent

SGD is closely related to online gradient descent.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classification systems, learn from mistakes over time.

Want to minimize some global loss $L(\vec{\theta}, \mathbf{X})$, when data points are presented in an online fashion $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ (like in streaming algorithms)

Will view SGD as a special case: when data points are presented (by design) in a random order.