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- Problem Set 5 can be turned in up to 12/12 (next Thursday) at
11:59pm with no penalty. No extensions will be granted beyond
this. The challenge problem is optional extra credit.

- After today you will be able to solve every problem on it.

- Additional final review office hours will be posted soon.



Last Class:

- Multivariable calculus review

- Introduction to gradient descent. Motivation as a greedy
algorithm.

- Convex functions

- Lipschitz functions
This Class:

- Analysis of gradient descent for convex Lipschitz functions

- Extension to projected gradient descent for constrained
optimization.

- Start on online/stochastic gradient descent?



Well-Behaved Functions

s )

Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 6,6, € RY and A € [0,1]:

(1= X)-f() + A-f(B) = F((1=2) -G +7-0))

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € R? and A € [0,1]:

— —

f8:) - 1(6) = VG (6 - )

Definition - Lipschitz Function: A function f : RY — R is G-
Lipschitz if || VA(8), < G for all 6.




GD Analysis - Convex Functions

Assume that:

- fis convex.
- fis G-Lipschitz.

- ||6: — 6.]]2 < R where 6, is the initialization point.
Gradient Descent

- Choose some initialization 91 and setn =

s

- Fori=1,...,t—1

+ 041 =6, —nVA(6)

- Return = arg ming 5{]‘(07)



GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-

Lipschitz function f, GD run with t > g iterations, n = %,
and starting point within radius R of 6, outputs 8 satisfying:

f(B) < f(8.) + .

Step 1: For all i, f(6) — f(6.) < \|@*§*\\§;E§IA1*§*‘|§ + ”Zﬁ Visually:




GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-

Lipschitz function f, GD run with t > g iterations, n = %,
and starting point within radius R of 6, outputs 8 satisfying:

f(B) < f(8.) + .

Step 1: For all i, f(6) — f(d.) < L=0elislfle=fli | 06" Formally.




GD Analysis Proof

~
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Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n = %,

and starting point within radius R of ., outputs d satisfying:

f(9) < f(6.) +e.

\.

i g 0 ;0. = 010, 2 2
Step 1: For all i, f(7) — f(f..) < L= 2 4 28

IR N N 5 g N2_g a2
Step 11: Vf(6)'(F; — 0.) < L=Celiolafelb 4 0@ . Step 1 by
convexity.



GD Analysis Proof

~
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Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n = %,

and starting point within radius R of ., outputs d satisfying:

f(9) < f(6.) +e.

\.

7 G—0, 2101 —0. |2 2
(0*) S [16; 15— 11641 I + % N

Step 1: For all i, f(6;) — L

Step 2: 1 i, f(0) —f(0.) < £ + %5~

—



GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-

Lipschitz function f, GD run with t > g iterations, n = %,
and starting point within radius R of 6, outputs 8 satisfying:

f(B) < f(8.) + .
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-

Lipschitz function f, GD run with t > g iterations, n = %,
and starting point within radius R of 6, outputs 8 satisfying:

f(B) < f(8.) + .

n



Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

* = arg min f(6),
des

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
for any 61,6, € Sand A € [0, 1]:

(=N +r-6,€8

Eg S={0eR?:|d], <1}
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Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

* Ps(y) = argming_g 16 = ¥l
- ForS={feR?:||f], <1} what is Ps(¥)?

- For S being a k dimensional subspace of RY what is Ps(})?
Projected Gradient Descent

- Choose some initialization #; and set n = Gi\/f.
- Fori=1,...,t—1
C 000 =0~ 0 - VfiB)
© G = Ps(81).

- Return 6 = arg min g f(@)
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Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RY jeR? andd e S,

IPs(¥) — 6l < |I7 — 6]l
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > szz i = %,
and starting point within radius R of 6, outputs § satisfying:

f(B) < f(6.) + € = minf(6) +

0eS

Recall: 653 = 0 — - Vf(6) and 611 = Ps(01%3").

0 9 é‘(out 2
Step 1: For all i, f(d) — f(4.) < | I 2Hn %1 | %

Step 1.a: For all i, f(7) — f(d.) < 10=2-12 2”9’“ %15 Ly

n

Step 2: %Zfﬁ f(6) — f(6,) < T;t + "G = Theorem.
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Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data
points Xi,...,X, and labels/observations y4, ..., y, solve:

0 —argmlnLGX,y Zé
Gerd

The gradient of L(@ X) has one component per data point:

X) = VUMs(%).)
j=1

When n is large this is very expensive to compute!

Training a neural network on ImageNet would require n = 14 million
back propagations! ... per iteration of GD.



Gradient Descent At Scale

Solution: Update using just a single data point, or a small batch of
data points per iteration.

- Looking at a single data point gives you a coarse, but still useful
cue on how to improve your model.

- If the data point is chosen uniformly at random, the sampled
gradient is correct in expectation.

. VL(,X).

3\4

ZVK Xj y; %ij[fl][v‘[( ( )yj)]

- The key idea behind stochastic gradient descent (SGD).



Stochastic Gradient Descent

Stochastic gradient descent takes more, but much cheaper steps
than gradient descent.




Online Gradient Descent

SGD is closely related to online gradient descent.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users,
given continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn
from mistakes over time.

Want to minimize some global loss L(f, X), when data points are
presented in an online fashion X;,X>, ..., X, (like in streaming
algorithms)

Will view SGD as a special case: when data points are presented (by
design) in a random order.
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