COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2024. Lecture 23

Logistics

- Problem Set 5 can be turned in up to 12/12 (next Thursday) at 11:59pm with no penalty. No extensions will be granted beyond this. The challenge problem is optional extra credit.
- · After today you will be able to solve every problem on it.
- · Additional final review office hours will be posted soon.

Summary

Last Class:

- · Multivariable calculus review '—
- Introduction to gradient descent. Motivation as a greedy algorithm.
- Convex functions
- · Lipschitz functions

This Class:

- · Analysis of gradient descent for convex Lipschitz functions
- Extension to projected gradient descent for constrained optimization.
- Start on online/stochastic gradient descent?

Well-Behaved Functions

Definition – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$(1-\lambda)\cdot f(\vec{\theta}_1) + \lambda\cdot f(\vec{\theta}_2) \ge f\left((1-\lambda)\cdot \vec{\theta}_1 + \lambda\cdot \vec{\theta}_2\right)$$

Corollary – Convex Function: A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$f(\vec{\theta}_2) - f(\vec{\theta}_1) \ge \vec{\nabla} f(\vec{\theta}_1)^{\mathsf{T}} \left(\vec{\theta}_2 - \vec{\theta}_1 \right)$$

Definition – Lipschitz Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is G-Lipschitz if $\|\nabla f(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.

GD Analysis – Convex Functions

Assume that:

• f is convex.

6 and R are know

- \cdot f is G-Lipschitz.
- $|\vec{\theta}_1 \vec{\theta}_*||_2 \le R$ where $\vec{\theta}_1$ is the initialization point.

Gradient Descent

- · Choose some initializatio<u>n $\vec{\theta_1}$ and set $\eta = \frac{R}{G\sqrt{t}}$.</u>
- For i = 1, ..., t 1

$$\cdot \vec{\theta}_{i+1} = \vec{\theta}_i - \underline{\eta} \vec{\nabla} f(\vec{\theta}_i)$$

· Return $\hat{\theta} = \mathop{\sf arg\,min}_{\vec{\theta_1},...,\vec{\theta_t}} f(\vec{\theta_i})$.

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function *f*, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\hat{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$\underline{f(\hat{\theta})} \leq \underline{f(\vec{\theta}_*) + \epsilon}.$$

Theorem – GD on Convex Lipschitz Functions: For convex G-Lipschitz function f, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function *f*, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius *R* of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Formally:

Theorem – GD on Convex Lipschitz Functions: For convex G-Lipschitz function f, GD run with $t \geq \frac{R^2G^2}{c^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i, f(\vec{\theta_i}) - f(\vec{\theta_*}) \leq \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
. $\theta_{i+1} = \theta_i - \eta \nabla f(\theta_i)$

Step 1.1: $\nabla f(\vec{\theta_i})^T (\vec{\theta_i} - \vec{\theta_*}) \leq \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$
 $\nabla (\phi_i)^T (\theta_i - \theta_*) \geq f(\theta_i) - f(\theta_*)$ (by convexity $f(\theta_i)$) $f(\theta_i)$ optopically $f(\theta_i)$ $f(\theta_i)$

Theorem – GD on Convex Lipschitz Functions: For convex G-Lipschitz function f, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function f, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$

Theorem - GD on Convex Lipschitz Functions: For convex G-Lipschitz function f, GD run with $t \ge \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\underline{\theta_{i}}) - f(\underline{\theta_{*}}) \leq \frac{\|\underline{\theta_{i}} - \overline{\theta_{*}}\|_{2}^{2} - \|\overline{\theta_{i+1}} - \overline{\theta_{*}}\|_{2}^{2}}{2\eta} + \frac{\eta G^{2}}{2} \Rightarrow$

Step 2: $\frac{1}{t} \sum_{i=1}^{t} f(\underline{\theta_{i}}) - f(\underline{\theta_{*}}) \leq \frac{R^{2}}{2\eta \cdot t} + \frac{\eta G^{2}}{2} - small}$ as no unit

$$||f(\underline{\theta_{i}}) - f(\underline{\theta_{*}})| \leq \frac{R^{2}}{2\eta \cdot t} + \frac{\eta G^{2}}{2} - small} = s \quad \text{in the supposition}$$

$$||f(\underline{\theta_{i}}) - f(\underline{\theta_{*}})| \leq \frac{R^{2}}{2\eta \cdot t} + \frac{\eta G^{2}}{2\eta \cdot t} - \frac{1}{2} + \frac{1}{2}$$

Theorem – GD on Convex Lipschitz Functions: For convex GLipschitz function f, GD run with $t \ge \frac{R^2G^2}{G\sqrt{t}}$ iterations, $\underline{\eta} = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta}_i) - f(\vec{\theta}_*) = \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$

$$\leq \frac{R^2}{2R} + \frac{RG^2}{6\sqrt{t}} = \frac{RG}{2\sqrt{t}} + \frac{RG}{2\sqrt{t}} = \frac{RG}{2\sqrt{t}}$$

$$+ \frac{RG}{2\sqrt{t}} = \frac{RG}{2\sqrt{t}} = \frac{RG}{2\sqrt{t}}$$

$$\leq \frac{RG}{2\sqrt{t}} = \frac{RG}{2\sqrt{t}} = \frac{RG}{2\sqrt{t}}$$

Theorem – GD on Convex Lipschitz Functions: For convex G-Lipschitz function f, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.$$

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$
.

Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \text{arg min } f(\vec{\theta}), \\
\vec{\theta}^* = \text{arg min } f(\vec{\theta}), \\
\underline{\vec{\theta} \in S}$$

where S is a convex set.

Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \arg\min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0, 1]$:

$$(1-\lambda)\vec{\theta_1} + \lambda \cdot \vec{\theta_2} \in \underline{\mathcal{S}}$$

Constrained Convex Optimization

Often want to perform convex optimization with convex constraints

$$\vec{\theta}^* = \underset{\vec{\theta} \in S}{\operatorname{arg\,min}} f(\vec{\theta}), \qquad S : \left\{ \theta \in \mathbb{N}^2 : \theta = \forall c \text{ for } c \right\}$$
where S is a convex set.
$$0_{i,j} o_{i} \in S_{j} \qquad \lambda o_{i,j} + (i-\lambda) o_{i,j} = \lambda \forall c, \text{ fix} \}$$

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in \mathcal{S}$ and $\lambda \in [0, 1]$:

$$(1-\lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in \mathcal{S}$$

E.g.
$$S = \{ \vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \leq 1 \}.$$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

$$P_{\mathcal{S}}(\vec{y}) = \arg\min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} - \vec{y}\|_{2}.$$
('projection of y onto S"

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \arg\min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_2$.
- For $S = \{\vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \le 1\}$ what is $P_S(\vec{y})$?

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \arg\min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_2$.
- For $S = \{\overrightarrow{\theta} \in \mathbb{R}^d : ||\overrightarrow{\theta}||_2 \le 1\}$ what is $P_S(\vec{y})$?
- For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \arg\min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_2$.
- For $S = {\vec{\theta} \in \mathbb{R}^d : ||\vec{\theta}||_2 \le 1}$ what is $P_S(\vec{y})$?
- For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

Projected Gradient Descent

Convex Projections

Projected gradient descent can be analyzed identically to gradient descent!

Convex Projections

Projected gradient descent can be analyzed identically to gradient descent!

Theorem – Projection to a convex set: For any convex set $S \subseteq \mathbb{R}^d$, $\vec{y} \in \mathbb{R}^d$, and $\vec{\theta} \in S$,

$$\|\underline{P_{\mathcal{S}}(\vec{y}) - \vec{\theta}}\|_2 \leq \|\vec{y} - \vec{\theta}\|_2.$$

Theorem – Projected GD: For convex <u>G-Lipschitz</u> function f, and convex set S, Projected GD run with $t \ge \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Theorem – Projected GD: For convex *G*-Lipschitz function *f*, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Recall:
$$\underline{\vec{\theta}_{i+1}^{(out)}} = \underline{\vec{\theta}_i} - \eta \cdot \nabla f(\vec{\theta}_i)$$
 and $\underline{\vec{\theta}_{i+1}} = P_{\mathcal{S}}(\underline{\hat{\theta}_{i+1}^{(out)}})$.

Theorem – Projected GD: For convex *G*-Lipschitz function *f*, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all $i, f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{\|\vec{\theta}_i - \theta_*\|_2^2 - \|\vec{\theta}_{i+1}^{(out)} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2\eta} \cdot \frac{(\mathbf{r}_0)^2}{2\eta} + \frac{\eta G^2}{2\eta} \cdot \frac{(\mathbf{r}_0)^2}{2\eta} \cdot \frac{(\mathbf{r}_0)^2}{2\eta}$

Theorem – Projected GD: For convex *G*-Lipschitz function *f*, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all $i, f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{\|\vec{\theta}_i - \theta_*\|_2^2 - \|\vec{\theta}_{i+1}^{(out)} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all $i, f(\vec{\theta}_i) - f(\vec{\theta}_*) \leq \frac{\|\vec{\theta}_i - \vec{\theta}_*\|_2^2 - \|\vec{\theta}_{i+1} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Theorem – Projected GD: For convex *G*-Lipschitz function *f*, and convex set *S*, Projected GD run with $t \ge \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius *R* of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}}^{(out)} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 2:
$$\frac{1}{t} \sum_{i=1}^t f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \implies$$
 Theorem.

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels/observations y_1, \dots, y_n solve:

and tabels/observations
$$\underline{y_1, \dots, y_n}$$
 solve:
$$\vec{\theta}^* = \underset{\vec{\theta} \in \mathbb{R}^d}{\text{arg min }} L(\vec{\theta}, \mathbf{X}, y) = \sum_{j=1}^n \ell(M_{\vec{\theta}}(\vec{x_j}), y_j).$$

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels/observations y_1, \dots, y_n solve:

$$\vec{\theta}^* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathbb{R}^d} L(\vec{\theta}, \mathbf{X}, y) = \sum_{j=1}^n \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

The gradient of $L(\vec{\theta}, X)$ has one component per data point:

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j}).$$

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels/observations y_1, \dots, y_n solve:

$$\vec{\theta}^* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathbb{R}^d} L(\vec{\theta}, \mathbf{X}, y) = \sum_{j=1}^n \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

The gradient of $L(\vec{\theta}, X)$ has one component per data point:

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

When *n* is large this is very expensive to compute!

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels/observations y_1, \dots, y_n solve:

$$\vec{\theta}^* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathbb{R}^d} L(\vec{\theta}, \mathbf{X}, y) = \sum_{j=1}^n \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

The gradient of $L(\vec{\theta}, X)$ has one component per data point:

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^{n} \underbrace{\vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j)}.$$

When *n* is large this is very expensive to compute!

Training a neural network on ImageNet would require n = 14 million back propagations!

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels/observations y_1, \dots, y_n solve:

$$\vec{\theta}^* = \arg\min_{\vec{\theta} \in \mathbb{R}^d} L(\vec{\theta}, \mathbf{X}, y) = \sum_{j=1}^n \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

The gradient of $L(\vec{\theta}, X)$ has one component per data point:

$$\vec{\nabla} L(\vec{\theta}, X) = \sum_{j=1}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j)$$

When *n* is large this is very expensive to compute!

Training a neural network on ImageNet would require n=14 million back propagations! ... per iteration of GD.

Solution: Update using just a single data point, or a small batch of data points per iteration.

Solution: Update using just a single data point, or a small batch of data points per iteration.

• Looking at a single data point gives you a coarse, but still useful cue on how to improve your model.

Solution: Update using just a single data point, or a small batch of data points per iteration.

- Looking at a single data point gives you a coarse, but still useful cue on how to improve your model.
- If the data point is chosen uniformly at random, the sampled gradient is correct in expectation.

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{i=j}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j}) \rightarrow \underbrace{\mathbb{E}_{j \sim [n]}[\vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j})]}_{\text{coin}} = \frac{1}{n} \underbrace{\vec{\nabla} L(\vec{\theta}, \mathbf{X})}_{\text{point}}.$$

Solution: Update using just a single data point, or a small batch of data points per iteration.

- Looking at a single data point gives you a coarse, but still useful cue on how to improve your model.
- If the data point is chosen uniformly at random, the sampled gradient is correct in expectation.

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j}) \to \mathbb{E}_{j \sim [n]}[\vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j})] = \frac{1}{n} \cdot \vec{\nabla} L(\vec{\theta}, \mathbf{X}).$$

The key idea behind stochastic gradient descent (SGD).

Stochastic Gradient Descent

Stochastic gradient descent takes more, but much cheaper steps than gradient descent.

Stochastic Gradient Descent

Stochastic gradient descent takes more, but much cheaper steps than gradient descent.

Online Gradient Descent

SGD is closely related to online gradient descent.