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- Problem Set 5 can be turned in up to 12/12 (next Thursday) at
11:59pm with no penalty. No extensions will be granted beyond
this. The challenge problem is optional extra credit.

- After today you will be able to solve every problem on it.

- Additional final review office hours will be posted soon.




Last Class: y 5(‘,&\ UA”

- Multivariable calculus review — J,\Q,ér\b‘h‘\/\ éQ/\'\\L-—‘(“\\/Q/
- Introduction to gradient descent. Motivation as a greedy

algorithm.
Convex functions \w \‘[\a/

- Lipschitz functlons
———————————~

This Class:

- Analysis of gradient descent for convex Lipschitz functions

- Extension to projected gradient descent for constrained
optimization.

- Start on online/stochastic gradient descent?



Well-Behaved Functions

Definition - Canvex Function: A function f: RY — R is convex

if and only if, for any 6,0, € R? and \ € [0, 1]; &k
(1= N f@) + - f0) 2 F((1=X) -6, + 1 - &)
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Corollary - Convex Function: A function f: RY — R is convex if

and only if, for any 6,6, € R? and X € [0,1]: o
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Lipschitz if || VA(0), < G for all 6.
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Enition - Lipschitz Function: A function f : R — R is G-




GD Analysis - Convex Functions

Assume that:

- fis convex. c W ave, Kedeos

- fis G-Lipschitz.

LS

- |61 — 0.]]> < R where 6, is the initialization point.
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Gradient Descent

- Choose some initialization 6; and set 5 = i
—_ﬁ

- Fori=1,...,t—1
R L), v

- Return § = arg ming 5{]‘(9_;)




GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n = %,

and starting point within radius R of 6,, outputs 6 satisfying:

f(9) < f(9.) +e.
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n = %,

and starting point within radius R of d,, outputs @ satisfying:

f(0) < f(0.) +e.

Step 1: For all i, f(6) — f(0.) < =L Wlaz0ell | 6" yigya)ly.
e
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n = %,

and starting point within radius R of d,, outputs @ satisfying:

f(0) < f(0.) +e.

Step 1: For all i, f(6) — f(0.) < =0l l0u=01i | 06 pormally,



GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n =

R
— ~ W,
and starting point within radius R of 6., outputs 6 satisfying:

f8) < f(6.) +e.
Step 1: For all i, () — f(d.) < 18=0-l3-18~0.15 | nG*, - 0. -1V
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n =

R
— ~ W,
and starting point within radius R of 6., outputs 6 satisfying:

f(9) < f(6.) +e.

S’[E\/Q_’I:\FOI’ all i, f(é;) *f(é;) < 16—, 13— 1161— 0. 113 + @
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Step 1.3: VA(6)(6; — 0,) < ”5"‘7*”5‘27'7‘§'+W‘§*”5 + 128 — Step1by
convexity.



GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n =

R
— ~ W,
and starting point within radius R of 6., outputs 6 satisfying:

f(6) < f(6.) +e.

Step 1: For all j, f(97-) ff(@:) < 10— Ge 5~ 11Bisr =0 1 + ”TGZ
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n =

R
— ~ W,
and starting point within radius R of 6., outputs 6 satisfying:

() < f(6.) + e
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GD Analysis Proof

f(0) < f(0.) +e.

Theorem - GD on Convex Lipschitz Functions: For conve

Lipschitz function f, GD run with t 2(& : iterations, n
and starting point within radius R of d,, outputs § satisfyIve=

X t — — 2 2
Step 2: § 321 f(0) — f0:) § 2z + 25
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For con
Lipschitz function f, GD run with t > Rifz iteratio

and starting point within radius R of f,, outputs 6 s3

- G_

Step2: 1 31, f(0) — fi0) < £+ 15
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Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.
— .¥’—\,

9‘“ T ayn ‘CZB) 0 = argminf(g)v
Jes

where S is a convex set.
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Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

—

0" = arg min f(6),

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
forany 65,6, € S and A € [0, 1]:

=N+ besS

-
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Constrained Convex Optimization

Often want to perform convex optimization with convex constramts| l

6" = argminf(A), S ieelﬁl 07 Ve Fﬂcj
= i m ereX?
where § is a convex set. 0,,0¢S MO+ (-0 - AN, (F&Vcl
\['(_ ‘g;; /\ f“’)‘)tl
Definition - Convex Set: A set S C RY is convex if and on only if,
forany 65,6, € S and A € [0, 1]:

1=\ +r-6, €S
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Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

* Ps() = argming_g |0 — V2.

UP"V).UJW’\—» Dpﬁ oo S\\
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Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

- Ps(V) = arg ming. s ||§—

Vi

- ForS ={f e RY: ||0]], < 1} what is Ps(¥)?
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Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

* Ps(V) = argming_ 6 — V..
- ForS={f e R?: |6, <1} what is Ps(¥)?

—

+ For & being a k dimensional subspace of | R what is Ps (y)

p (\\3} \/\/ Y whemts V13 orhaneimy)
<y s S
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Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

* Ps(V) = argmingg 6= V.
- ForS ={f e RY: ||0]], < 1} what is Ps(¥)?

- For S being a k dimensional subspace of RY, what is Ps(})?
Projected Gradient Descent

- Choose some initialization #; and setn = & av i ﬁ(e)

- Fori=1,...,t—1
- v _é’—n VA(6))

/+1
+1 — Ps ((;(out))

- Return f = arg min; (6)).

L
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Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!
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Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RY JeRI andfe S,

IPs(¥) = 6l < |17 = 6]l

2 ° 4
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Li schitz functionf and
convex set S, Projected GD run with t > R G G\/,

and starting point within radius R of 0*, outputs 0 ?atﬁs?y@g*‘

f(B) < f(6.) + € = minf(0) +

~——
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > £ jterations, n = %,

62
and starting point within radius R of d,, outputs @ satisfying:

f(6) < f(f.) + € = minf(8) + €
0eS

Recall: 614" = 4, — - Vf(§)) and G, = Ps(81%4").
et
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and

convex set S, Projected GD run with t > R}’? i

— _R_
GVt
and starting point within radius R of d,, outputs @ satisfying:
f(6) < f(f.) + e = min f(8) +

0eS

0 —n - V(G) and b,y = Ps(6'5").

170 BT 01 pet ( Qllows an
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Recall: 9,+1

Step 1: For all i, f(F) — (6. )
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > £ jterations, n = %,

62
and starting point within radius R of d,, outputs @ satisfying:

f(6) < f(f.) + € = minf(8) + €
0eS

Recall: 614" = 6, — - Vf(§)) and G, = Ps(81%4").

= N o _ 2_yglouty _ g 12
Step 1: For all i, f(6)) — f(d,) < 12=2L: QH,,O'K\ AT ng’,

Step 1.a: For all i, f(6)) — f(f.) < “5"_5"”%_2”5’“_5*“% + ”TGZ
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > Rifz i = %,
and starting point within radius R of d,, outputs @ satisfying:

x f(é)éf(5)+6—;r1€'nf( )+

Recall: 614" = 6, — - Vf(§)) and G, = Ps(81%4").
. = N 9 0. é‘(out —0. , 2
Step 1: For all i, f(d)) — f(d,) < IE 2“7] el s

Nl

. g _ 2
Step 1.a: For all i, f(0;) — f(6.) < 160 1; 27'19’“ A .

Step2: 130 f(6) — f(0 )g%—&-% — Theorem.
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Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data

points Xi,...,X, and labels/observationsMso ve:
n /‘ sz/é,\.k:\:vw ""“JK th—
g —argmlnLQX ZE J

GeRrd £
—_—
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Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data
points Xi,...,X, and labels/observations y4, ..., y, solve:

g —argmlnLQX ZE (X))

feRrd

The gradient of L(4,X) has one component per data point:

vL(, x%J: > VUMHK), )
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Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data
points Xi,...,X, and labels/observations y4, ..., y, solve:

g —argmlnLQX ZE (X))

feRrd

The gradient of L(4,X) has one component per data point:

= VUMs(%),¥)
j=1

When n is large this is very expensive to compute! @C\/\B
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Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data
points Xi,...,X, and labels/observations y4, ..., y, solve:

g —argmlnLQX ZE (X))

feRrd

The gradient of L(4,X) has one component per data point:

n
= VUMHX), ;)
j=1 —_—

When n is large this is very expensive to compute!
Training a neural network on ImageNet would require n = 14 million
—

back propagations!

_—
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Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data
points Xi,...,X, and labels/observations y4, ..., y, solve:

g —argmlnLQX ZE (X))

feRrd

The gradient of L(§, X) has one component per data point:

When n is large this is very expensive to compute!

Training a neural network on ImageNet would require n = 14 million
back propagations! ... per iteration of GD.

16



Gradient Descent At Scale

Solution: Update using just a single data point, or a small batch of
data points per iteration.

17



Gradient Descent At Scale

Solution: Update using just a single data point, or a small batch of
data points per iteration.

- Looking at a single data point gives you a coarse, but still useful
cue on how to improve your model.

17



Gradient Descent At Scale

Solution: Update using just a single data point, or a small batch of
data points per iteration.

- Looking at a single data point gives you a coarse, but still useful
cue on how to improve your model.

- If the data point is chosen uniformly at random, the sampled
gradient is correct in expectation.

v Zw u\jg/ﬂ][/w_\(()yj)] =— w(e X).
/__J//— M:ﬁ 5"-'“)7\'/ LC’»\L 730‘\/\'\'

17



Gradient Descent At Scale

Solution: Update using just a single data point, or a small batch of
data points per iteration.

- Looking at a single data point gives you a coarse, but still useful
cue on how to improve your model.

- If the data point is chosen uniformly at random, the sampled
gradient is correct in expectation.

1

n
VL(@,X) = Z vg(Mé,T()_(j)vyj) - JE’]N[H] [V(J‘(M(T(;j)ey})] - n ' VL(H,X).
i=

- The key idea behind stochastic gradient descent (SGD).
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Stochastic Gradient Descent

Stochastic gradient descent takes more, but much cheaper steps
than gradient descent.
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Stochastic Gradient Descent

Stochastic gradient descent takes more, but much cheaper steps
than gradient descent.

/
///// \\\\

/
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Online Gradient Descent

SGD is closely related to online gradient descent.
B
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