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- Problem Set 5 is posted. It can be turned in up to 12/12 (next
Thursday) at 11:59pm with no penalty. No extensions will be
granted beyond this. The challenge problem is optional extra
credit.

- The final will be on 12/18 in Totman Gym, 10:30am-12:30pm.
- Additional final review office hours will be posted soon.

- See website/Canvas for final prep material.



Last Class:

- Finish up the power method.
- Krylov subspace methods.
- Connection between random walks and power method.

- Very brief intro to continuous optimization.
This Class:

- Multivariable calculus review

- Introduction to gradient descent. Motivation as a greedy
algorithm.

- Convex functions

- Analysis of gradient descent for Lipschitz, convex functions?



Mathematical Setup

Given some function f: R? — R, find 4, with:

Typically up to some small approximation factor.
Often under some constraints:
|16l <1, 18]k <.
- AG<b, 67A0> 0.
L) < c



Why Continuous Optimization?

Modern machine learning centers around continuous optimization.
Typical Set Up: (supervised machine learning)
- Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.



Optimization in ML

Example: Linear Regression
Model: Mz : RY — R with Mz(X) < (6,%) = (1) - X(1) + ... + 6(d) - X(d).
Parameter Vector: 6 € RY (the regression coefficients)

Optimization Problem: Given data points (training points) X1, ..., X,
(the rows of data matrix X € R"*9) and labels y1,...,y, € R, find 6,
minimizing the loss function:

Ly, (0) = L(6,X,¥) = Zf

where ¢ is some measurement of how far Mz(X;) is from y;.

< UMFX), i) = (Mz(%5) — y,-)2 (least squares regression)

€ {—1,1} and £(Mz(X),vi) = In (1 + exp(—yiMz(X;))) (logistic
regression)



Optimization in ML

Lx7(0) = Z Mg(Xi), i)

- Solving the final optimization problem has many different
names: likelihood maximization, empirical risk minimization,
minimizing training loss, etc.

—

- Generalization tries to explain why minimizing the loss Ly (0)
on the training points minimizes the loss on future test points.
l.e., makes us have good predictions on future inputs.

- Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)



Optimization Algorithms

Choice of optimization algorithm for minimizing f(g) will depend on
many things:

- The form of f (in ML, depends on the model & loss function).
- Any constraints on § (e.g., [|4]| < c).

- Computational constraints, such as memory constraints.
Lyy(0) = Zf

What are some popular optimization algorithms?



Gradient Descent

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be
applied to almost any continuous function we care about
optimizing.

- Often not the ‘best’ choice for any given function, but it is the

approach of choice in ML since it is simple, general, and often
works very well.

- At each step, tries to move towards the lowest nearby point in
the function that is can - in the opposite direction of the
gradient.




Multivariate Calculus Review

Let & € R? denote the it standard basis vector,
& =10,0,1,0,0,...,0].

1 at position i

Partial Derivative:

O [0+ E) ~f0)
i

lim
89( ) e—0 €

Directional Derivative:

02 16) — 1 [O+0) = 16)

|
e—0 €
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Multivariate Calculus Review

Gradient: Just a ‘list’ of the partial derivatives.
of

9

vie) = | 7

of

20(d)

Directional Derivative in Terms of the Gradient:

— —

Dy f(0) = (V, VA(6)).

n



Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(f) for any .

Gradient Evaluation: Can compute V() for any 4.

In neural networks:

- Function evaluation is called a forward pass (propogate an
input through the network).

- Gradient evaluation is called a backward pass (compute
the gradient via chain rule, using backpropagation).
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Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let 810 = 4U=" + 5 where 5 is a
(small) ‘step size’ and V is a direction chosen to minimize
O 4 ).

. 0+ ) — f(8 . gli-" 07 ()

e—0 € e—0 €

So for small n:

fEV) = G0 = FEV) ) = () - DAEY)
=1 (V, VAO')).

We want to choose v minimizing (v, Vf(6U=")) - i.e, pointing in the
direction of Vf(AU=") but with the opposite sign.
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Gradient Descent Psuedocode

Gradient Descent

- Choose some initialization 6(%).
- Fori=1,...,t
. 67(/') _ 9_’((41) . nvf(g(/—w))
- Return 1, as an approximate minimizer of f(6).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come).

- For now assume n stays the same in each iteration.
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When Does Gradient Descent Work?

BeER Vf(O) ER

N £(6)
\

f(6)
[ NS 9"

9* A4

Gradient Descent Update: 6, = 6; — nVf(0;)
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Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 6,6, € RY and A € [0,1]:

(1= X)-f() + A-f(B) = F((1=2) -G +7-0))

f(6)

a
v




Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € RY and X € [0,1]:

f(62) — £8) = VA (8 - 71)

f(6)

a
v




Lipschitz Functions
PeER VFO) ER

r

Gradient Descent Update:
f(6) Oipq = 6 — nVI(0)

v 0*
Need to assume that the function is Lipschitz (size of gradient

is bounded): There is some G st

VO VA2 < G e Vo0 |f(61) = f(62)] < G- 161 — 62l



Well-Behaved Functions

s )

Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 6,6, € RY and A € [0,1]:

(1= X)-f() + A-f(B) = F((1=2) -G +7-0))

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € R? and A € [0,1]:

— —

f8:) - 1(6) = VG (6 - )

Definition - Lipschitz Function: A function f : RY — R is G-
Lipschitz if || VA(8), < G for all 6.
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GD Analysis - Convex Functions

Assume that:

- fis convex.
- fis G-Lipschitz.

- ||6: — 6.]]2 < R where 6, is the initialization point.
Gradient Descent

- Choose some initialization 91 and setn =

s

- Fori=1,...,t—1

+ 041 =6, —nVA(6)

- Return = arg ming 5{]‘(07)
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-

Lipschitz function f, GD run with t > g iterations, n = %,
and starting point within radius R of 6, outputs 8 satisfying:

f(B) < f(8.) + .

Step 1: For all i, f(6) — f(6.) < \|@*§*\\§;E§IA1*§*‘|§ + ”Zﬁ Visually:
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-

Lipschitz function f, GD run with t > g iterations, n = %,
and starting point within radius R of 6, outputs 8 satisfying:

f(B) < f(8.) + .

Step 1: For all i, f(6) — f(d.) < L=0elislfle=fli | 06" Formally.
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