
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 22

1

Logistics

• Problem Set 5 is posted. It can be turned in up to 12/12 (next
Thursday) at 11:59pm with no penalty. No extensions will be
granted beyond this. The challenge problem is optional extra
credit.

• The final will be on 12/18 in Totman Gym, 10:30am-12:30pm.

• Additional final review office hours will be posted soon.

• See website/Canvas for final prep material.

2

Summary

Last Class:

• Finish up the power method.

• Krylov subspace methods.

• Connection between random walks and power method.

• Very brief intro to continuous optimization.

This Class:

• Multivariable calculus review

• Introduction to gradient descent. Motivation as a greedy
algorithm.

• Convex functions

• Analysis of gradient descent for Lipschitz, convex functions?

3

Mathematical Setup

Given some function f : Rd → R, find θ⃗⋆ with:

f(θ⃗⋆) = min
θ⃗∈Rd

f(θ⃗) + ϵ

Typically up to some small approximation factor.

Often under some constraints:

• ∥θ⃗∥2 ≤ 1, ∥θ⃗∥1 ≤ 1.
• Aθ⃗ ≤ b⃗, θ⃗TAθ⃗ ≥ 0.
•
∑d

i=1 θ⃗(i) ≤ c.

4

Why Continuous Optimization?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

• Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

• The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

• Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.

5

Optimization in ML

Example: Linear Regression

Model: Mθ⃗ : Rd → R with Mθ⃗ (⃗x)
def
= ⟨θ⃗, x⃗⟩ = θ⃗(1) · x⃗(1) + . . .+ θ⃗(d) · x⃗(d).

Parameter Vector: θ⃗ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) x⃗1, . . . , x⃗n
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find θ⃗∗
minimizing the loss function:

LX,y(θ⃗) = L(θ⃗, X, y⃗) =
n∑
i=1

ℓ(Mθ⃗ (⃗xi), yi)

where ℓ is some measurement of how far Mθ⃗ (⃗xi) is from yi.

• ℓ(Mθ⃗ (⃗xi), yi) =
(
Mθ⃗ (⃗xi)− yi

)2 (least squares regression)
• yi ∈ {−1, 1} and ℓ(Mθ⃗ (⃗xi), yi) = ln

(
1+ exp(−yiMθ⃗ (⃗xi))

)
(logistic

regression)

6

Optimization in ML

LX,⃗y(θ⃗) =
n∑
i=1

ℓ(Mθ⃗ (⃗xi), yi)

• Solving the final optimization problem has many different
names: likelihood maximization, empirical risk minimization,
minimizing training loss, etc.

• Generalization tries to explain why minimizing the loss LX,⃗y(θ⃗)
on the training points minimizes the loss on future test points.
I.e., makes us have good predictions on future inputs.

• Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

7

Optimization Algorithms

Choice of optimization algorithm for minimizing f(θ⃗) will depend on
many things:

• The form of f (in ML, depends on the model & loss function).

• Any constraints on θ⃗ (e.g., ∥θ⃗∥ < c).

• Computational constraints, such as memory constraints.

LX,⃗y(θ⃗) =
n∑
i=1

ℓ(Mθ⃗ (⃗xi), yi)

What are some popular optimization algorithms?

8

Gradient Descent

Next few classes: Gradient descent (and some important variants)

• An extremely simple greedy iterative method, that can be
applied to almost any continuous function we care about
optimizing.

• Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

• At each step, tries to move towards the lowest nearby point in
the function that is can – in the opposite direction of the
gradient.

9

Multivariate Calculus Review

Let e⃗i ∈ Rd denote the ith standard basis vector,
e⃗i = [0, 0, 1, 0, 0, . . . , 0]︸ ︷︷ ︸

1 at position i

.

Partial Derivative:

∂f
∂θ⃗(i)

= lim
ϵ→0

f(θ⃗ + ϵ · e⃗i)− f(θ⃗)
ϵ

.

Directional Derivative:

Dv⃗ f(θ⃗) = lim
ϵ→0

f(θ⃗ + ϵ⃗v)− f(θ⃗)
ϵ

.

10

Multivariate Calculus Review

Gradient: Just a ‘list’ of the partial derivatives.

∇⃗f(θ⃗) =

∂f

∂θ⃗(1)
∂f

∂θ⃗(2)
...
∂f

∂θ⃗(d)

Directional Derivative in Terms of the Gradient:

D⃗v f(θ⃗) = ⟨⃗v, ∇⃗f(θ⃗)⟩.

11

Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(θ⃗) for any θ⃗.

Gradient Evaluation: Can compute ∇⃗f(θ⃗) for any θ⃗.

In neural networks:

• Function evaluation is called a forward pass (propogate an
input through the network).

• Gradient evaluation is called a backward pass (compute
the gradient via chain rule, using backpropagation).

12

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at θ⃗(0), in each iteration let θ⃗(i) = θ⃗(i−1) + ηv⃗, where η is a
(small) ‘step size’ and v⃗ is a direction chosen to minimize
f(θ⃗(i−1) + ηv⃗).

D⃗v f(θ⃗) = lim
ϵ→0

f(θ⃗ + ϵ⃗v)− f(θ⃗)
ϵ

.D⃗v f(θ⃗(i−1)) = lim
ϵ→0

f(θ⃗(i−1) + ϵ⃗v)− f(θ⃗(i−1))

ϵ
.

So for small η:

f(θ⃗(i))− f(θ⃗(i−1)) = f(θ⃗(i−1) + ηv⃗)− f(θ⃗(i−1)) ≈ η · D⃗vf(θ⃗(i−1))

= η · ⟨⃗v, ∇⃗f(θ⃗(i−1))⟩.

We want to choose v⃗ minimizing ⟨⃗v, ∇⃗f(θ⃗(i−1))⟩ – i.e., pointing in the
direction of ∇⃗f(θ⃗(i−1)) but with the opposite sign.

13

Gradient Descent Psuedocode

Gradient Descent

• Choose some initialization θ⃗(0).
• For i = 1, . . . , t

• θ⃗(i) = θ⃗(i−1) − η∇f(θ⃗(i−1))

• Return θ⃗(t), as an approximate minimizer of f(θ⃗).

Step size η is chosen ahead of time or adapted during the
algorithm (details to come).

• For now assume η stays the same in each iteration.

14

When Does Gradient Descent Work?

Gradient Descent Update: θ⃗i+1 = θ⃗i − η∇f(θ⃗i)

15

Convexity

Definition – Convex Function: A function f : Rd → R is convex
if and only if, for any θ⃗1, θ⃗2 ∈ Rd and λ ∈ [0, 1]:

(1− λ) · f(θ⃗1) + λ · f(θ⃗2) ≥ f
(
(1− λ) · θ⃗1 + λ · θ⃗2

)

16

Convexity

Corollary – Convex Function: A function f : Rd → R is convex if
and only if, for any θ⃗1, θ⃗2 ∈ Rd and λ ∈ [0, 1]:

f(θ⃗2)− f(θ⃗1) ≥ ∇⃗f(θ⃗1)T
(
θ⃗2 − θ⃗1

)

17

Lipschitz Functions

Gradient Descent Update:
θ⃗i+1 = θ⃗i − η∇f(θ⃗i)

Need to assume that the function is Lipschitz (size of gradient
is bounded): There is some G s.t.:

∀θ⃗ : ∥∇⃗f(θ⃗)∥2 ≤ G ⇔ ∀θ⃗1, θ⃗2 : |f(θ⃗1)− f(θ⃗2)| ≤ G · ∥θ⃗1 − θ⃗2∥2

18

Well-Behaved Functions

Definition – Convex Function: A function f : Rd → R is convex
if and only if, for any θ⃗1, θ⃗2 ∈ Rd and λ ∈ [0, 1]:

(1− λ) · f(θ⃗1) + λ · f(θ⃗2) ≥ f
(
(1− λ) · θ⃗1 + λ · θ⃗2

)

Corollary – Convex Function: A function f : Rd → R is convex if
and only if, for any θ⃗1, θ⃗2 ∈ Rd and λ ∈ [0, 1]:

f(θ⃗2)− f(θ⃗1) ≥ ∇⃗f(θ⃗1)T
(
θ⃗2 − θ⃗1

)

Definition – Lipschitz Function: A function f : Rd → R is G-
Lipschitz if ∥∇⃗f(θ⃗)∥2 ≤ G for all θ⃗.

19

GD Analysis – Convex Functions

Assume that:

• f is convex.

• f is G-Lipschitz.

• ∥θ⃗1 − θ⃗∗∥2 ≤ R where θ⃗1 is the initialization point.

Gradient Descent

• Choose some initialization θ⃗1 and set η = R
G
√
t .

• For i = 1, . . . , t− 1

• θ⃗i+1 = θ⃗i − η∇⃗f(θ⃗i)

• Return θ̂ = argminθ⃗1,...,θ⃗t f(θ⃗i).

20

GD Analysis Proof

Theorem – GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t ≥ R2G2

ϵ2 iterations, η = R
G
√
t ,

and starting point within radius R of θ⃗∗, outputs θ̂ satisfying:

f(θ̂) ≤ f(θ⃗∗) + ϵ.

Step 1: For all i, f(θ⃗i)− f(θ⃗∗) ≤ ∥θ⃗i−θ⃗∗∥2
2−∥θ⃗i+1−θ⃗∗∥2

2
2η + ηG2

2 . Visually:

21

GD Analysis Proof

Theorem – GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t ≥ R2G2

ϵ2 iterations, η = R
G
√
t ,

and starting point within radius R of θ⃗∗, outputs θ̂ satisfying:

f(θ̂) ≤ f(θ⃗∗) + ϵ.

Step 1: For all i, f(θ⃗i)− f(θ⃗∗) ≤ ∥θ⃗i−θ∗∥2
2−∥θ⃗i+1−θ⃗∗∥2

2
2η + ηG2

2 . Formally:

22

