COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.

Lecture 22

- \cdot Problem Set 5 is posted. It can be turned in up to 12/12 (next Thursday) at 11:59pm with no penalty. No extensions will be granted beyond this. The challenge problem is optional extra credit.
- \cdot The final will be on 12/18 in Totman Gym, 10:30am-12:30pm.
- Additional fnal review offce hours will be posted soon.
- See website/Canvas for fnal prep material.

Summary

Last Class:

- Finish up the power method.
- Krylov subspace methods.
• Connection between rand
• Very brief intro to continu
- Connection between random walks and power method.
- Very brief intro to continuous optimization.

This Class:

- Multivariable calculus review
- Introduction to gradient descent. Motivation as a greedy algorithm.
- Convex functions
- Analysis of gradi<u>ent descent for Lipschitz, convex functi</u>ons?

Mathematical Setup

Given some function $f: \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta}_*$ with: $\left[\right]$ - $\left[\right]$

$$
f(\vec{\theta}_\star) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta})
$$

Given some function $f: \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta}_*$ with:

$$
f(\vec{\theta}_\star) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon
$$

Typically up to some small approximation factor.

Given some function $f: \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta}_*$ with:

$$
f(\vec{\theta}_\star) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon
$$

Typically up to some small approximation factor.

Often under some constraints:

$$
\cdot \quad \|\vec{\theta}\|_2 \le 1, \quad \|\vec{\theta}\|_1 \le 1. \cdot \quad \frac{\mathbf{A}\vec{\theta} \le \vec{\mathbf{b}}}{\mathbf{B}} \quad \frac{\vec{\theta}^{\mathsf{T}} \mathbf{A}\vec{\theta} \ge 0.
$$

$$
\cdot \overline{\sum_{i=1}^d \vec{\theta}(i)} \leq c.
$$

Modern machine learning centers around continuous optimization. Typical Set Up: (supervised machine learning)

- Have a model, which is a function mapping inputs to predictions (neural network, linear function, low-degree polynomial etc).
- The model is parameterized by a parameter vector (weights in a θ -neural network, coefficients in a linear function or polynomial)
	- Want to train this model on input data, by picking a parameter vector such that the model does a good job mapping inputs to predictions on your training data.

This training step is typically formulated as a continuous optimization problem.

Example: Linear Regression

Example: Linear Regression $\mathsf{Model}\colon\mathcal{M}_{\vec{\theta}}:\mathbb{R}^d\to\mathbb{R}$ with $\mathcal{M}_{\vec{\theta}}(\vec{x})\stackrel{\mathrm{def}}{=}\langle\vec{\theta},\vec{x}\rangle$ \sim [] $\langle x, \theta \rangle$ α $\langle x_1, \epsilon \rangle$ X_{1} →

.

Example: Linear Regression

 $\textsf{Model:} \ M_{\vec{\theta}}: \mathbb{R}^d \to \mathbb{R} \text{ with } M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d).$

Example: Linear Regression $\textsf{Model:} \ M_{\vec{\theta}}: \mathbb{R}^d \to \mathbb{R} \text{ with } M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d).$ Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Example: Linear Regression

Model: $M_{\vec{\theta}} : \mathbb{R}^d \to \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$. Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\vec{x}_1, \ldots, \vec{x}_n$ (the rows of data matrix $X \in \mathbb{R}^{n \times d}$) and labels $y_1, \ldots, y_n \in \mathbb{R}$, find $\tilde{\theta}_*$ minimizing the loss function: $\exists N$
 $\ell \rightarrow \ell$
 $\ell(\vec{\theta}, \vec{x}, \vec{y}) \geq \sum_{l} \ell(M_{\vec{\theta}}(\vec{x}_l), y_l)$ $L(\vec{\theta}, \mathsf{X}, \vec{y}) \geq$ ࠀ=*i* $\ell(M_{\bar{\theta}}$ $_{\vec{\theta}}(\vec{x}_i), y_i)$ where *l* is some measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i .

wher<u>e ℓ is s</u>ome measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i .

Example: Linear Regression

 $\textsf{Model:} \ M_{\vec{\theta}}: \mathbb{R}^d \to \mathbb{R} \text{ with } M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d).$ Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\vec{x}_1, \ldots, \vec{x}_n$ (the rows of data matrix $X \in \mathbb{R}^{n \times d}$) and labels $y_1, \ldots, y_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$
L(\vec{\theta}, \mathsf{X}, \vec{y}) = \sum_{i=1}^n \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)
$$

where ℓ is some measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i .

- $\cdot \ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = (M_{\vec{\theta}}(\vec{x}_i) y_i)^2$ (least squares regression)
- \cdot *y_i* ∈ {−1, 1} and $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = \ln(1 + \exp(-y_i M_{\vec{\theta}}(\vec{x}_i)))$ (logistic regression)

Example: Linear Regression

 $\textsf{Model:} \ M_{\vec{\theta}}: \mathbb{R}^d \to \mathbb{R} \text{ with } M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d).$ Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\vec{x}_1, \ldots, \vec{x}_n$ (the rows of data matrix $X \in \mathbb{R}^{n \times d}$) and labels $y_1, \ldots, y_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

minimizing the loss function:
\n
$$
f(\theta) = (\underbrace{L_{x,y}(\vec{\theta})} + \underbrace{L(\vec{\theta}, x, \vec{y})}_{i=1}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i) \qquad f(\theta) = \min \{f(\theta) : \text{min } f(\theta) \}
$$

where ℓ is some measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i .

- $\cdot \ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = (M_{\vec{\theta}}(\vec{x}_i) y_i)^2$ (least squares regression)
- \cdot *y_i* ∈ {−1, 1} and $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = \ln(1 + \exp(-y_i M_{\vec{\theta}}(\vec{x}_i)))$ (logistic regression)

$$
L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^n \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)
$$

- Solving the fnal optimization problem has many different names: likelihood maximization, empirical risk minimization, minimizing training loss, etc.
- Generalization tries to explain why minimizing the loss $L_{\mathbf{x},\vec{v}}(\vec{\theta})$ on the *training points* minimizes the loss on future *test points*. I.e., makes us have good predictions on future inputs.
- Continuous optimization is also very common in unsupervised learning. (PCA, spectral clustering, etc.) on the
I.e., ma
Continu
learnin

Optimization Algorithms

Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things:

- The form of *f* (in ML, depends on the model & loss function).
- \cdot Any constraints on $\vec{\theta}$ (e.g., $\|\vec{\theta}\| < c$).
- Computational constraints, such as memory constraints.

$$
\widehat{L_{X,\vec{y}}(\vec{\theta})} = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)
$$
 5-bchski
gradovh

Optimization Algorithms

Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things:

- The form of *f* (in ML, depends on the model & loss function).
- Any constraints on $\vec{\theta}$ (e.g., $\|\vec{\theta}\| < c$).
- Computational constraints, such as memory constraints.

$$
L_{\mathsf{X},\vec{\mathsf{y}}}(\vec{\theta}) = \sum_{i=1}^n \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)
$$

What are some popular optimization algorithms?

appen (viert of gradient hill climber)
ADAM (viert of gradient) brundler tut
nebar-mead (deinthu free) why plane Ada-factor von der dessert

Gradient Descent

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied to almost any continuous function we care about optimizing.
- Often not the 'best' choice for any given function, but it is the approach of choice in ML since it is simple, general, and often works very well.
- At each step, tries to move towards the lowest nearby point in the function that is can – in the opposite direction of the gradient.

Let $\vec{e}_i \in \mathbb{R}^d$ denote the *i*th standard basis vector, $\vec{e}_i = [0, 0, 1, 0, 0, \dots, 0].$

1 at position *i*

Let $\vec{e}_i \in \mathbb{R}^d$ denote the *i*th standard basis vector, $\vec{e}_i = [0, 0, 1, 0, 0, \dots, 0].$

1 at position *i* Partial Derivative: ∂*f* $\frac{\partial}{\partial \vec{\theta}(i)} = \lim_{\epsilon \to 0}$ $f(\vec{\theta} + \epsilon \cdot \vec{e}_i) - f(\vec{\theta})$ $\frac{\epsilon_1 f(\sigma)}{\epsilon}$. $f: \mathbb{R}^d \rightarrow \mathbb{R}$ $\begin{bmatrix} 0(1) \\ 0(2) \\ 0(1) + \epsilon \end{bmatrix}$ $\Bigg| \begin{array}{c} \epsilon \\ \epsilon \end{array}$

Let $\vec{e}_i \in \mathbb{R}^d$ denote the *i*th standard basis vector, $\vec{e}_i = [0, 0, 1, 0, 0, \dots, 0].$

1 at position *i*

Partial Derivative:

$$
\frac{\partial f}{\partial \vec{\theta}(i)} = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \cdot \vec{e}_i) - f(\vec{\theta})}{\epsilon}.
$$

Directional Derivative:

$$
D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \vec{\epsilon}\vec{\psi}) - f(\vec{\theta})}{\epsilon}.
$$

Multivariate Calculus Review

$$
f: \mathbb{R}^d \rightarrow \mathbb{R} \qquad \nabla f \circledast \in \mathbb{R}^d
$$

Gradient: Just a 'list' of the partial derivatives.

$$
\vec{\nabla}f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}
$$

Gradient: Just a 'list' of the partial derivatives.

$$
\vec{\nabla}f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}
$$

Directional Derivative in Terms of the Gradient:

$$
\nabla(\mathbf{1}) \cdot \frac{\partial F}{\partial \mathcal{Q}(\mathbf{1})} + \nabla(\mathbf{1}) \cdot \frac{\partial F}{\partial \mathbf{0}}|_{\mathcal{D}} \cdot \dots + \nabla(\mathbf{1}) \cdot \frac{\partial F}{\partial \mathbf{0}}|_{\mathcal{D}})
$$

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.

Gradient Evaluation: Can compute $\vec{\nabla}f(\vec{\theta})$ for any $\vec{\theta}$.

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$. **Gradient Evaluation**: Can compute $\vec{\nabla} f(\vec{\theta})$ for any $\vec{\theta}$.

In neural networks:

- Function evaluation is called a forward pass (propogate an input through the network).
- \cdot Gradi<u>ent eva</u>luation is called a backward pass (compute the gradient via chain rule, using backpropagation).

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) 'step size' and !*v* is a direction chosen to minimize $f(\mathbf{b}) = f(\vec{\theta}^{(i-1)} + \eta \vec{v}).$ $\lim_{n \to \infty}$ in each neighborhouse $\lim_{n \to \infty} e^{i\theta_n}$.

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v}).$

$$
D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon}.
$$

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v}).$

$$
D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}.
$$

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) 'step size' and !*v* is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v}).$

$$
D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \underbrace{\text{lim}_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}}
$$

So for small η :

 $f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)})$

 φ ^{θ}

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v}).$

$$
D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}.
$$

So for small η :

$$
\underbrace{f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)})}_{\text{minimize}} = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot \underbrace{D_{\vec{v}}f(\vec{\theta}^{(i-1)})}_{\text{minimize}} \\
$$

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v}).$

$$
D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}.
$$

So for small η :

$$
f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot D_{\vec{v}} f(\vec{\theta}^{(i-1)})
$$

= $\eta \cdot \langle \vec{v}, \vec{\nabla} f(\vec{\theta}^{(i-1)}) \rangle$.

$$
\mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w}
$$

$$
\nabla \vec{v} = \nabla f(\vec{\theta}^{(i)})
$$

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) 'step size' and !*v* is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v}).$

$$
D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}.
$$

So for small η :

$$
f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot D_{\vec{v}} f(\vec{\theta}^{(i-1)})
$$

= $\eta \cdot \langle \vec{v}, \vec{\nabla} f(\vec{\theta}^{(i-1)}) \rangle$.

We want to choose \vec{v} minimizing $\langle \vec{v}, \vec{\nabla} f(\vec{\theta}^{(i-1)}) \rangle$ – i.e., pointing in the J_i
lirection of $\vec{\nabla} f(\vec{\theta}^{(i-1)})$ but with the opposite sign. direction of $\vec{\nabla} f(\vec{\theta}^{(i-1)})$ but with the opp<u>osite sign.</u> $V = -\nabla F(\theta^{1-1})$

Gradient Descent Psuedocode

Gradient Descent

$$
\mathcal{M}_{\mathcal{O}_{\leq N}(0,12^{k+1})}
$$

- Choose some initialization $\vec{\theta}^{(0)}$.
- For $i = 1, \ldots, t$
	- $\cdot \vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} \eta \nabla f(\vec{\theta}^{(i-1)})$
- \cdot Return $\vec{\theta}^{(t)}$, as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorith_m (details to come).

• For now assume η stays the same in each iteration.

When Does Gradient Descent Work?

Gradient Descent Update: $\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$

Convexity

Convexity

Corollary – Convex Function: A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in \mathbb{R}^d$ and \mathbb{R} $f(\vec{\theta}_2) - f(\vec{\theta}_1) \geq \vec{\nabla} f(\vec{\theta}_1)^T \left(\vec{\theta}_2 - \vec{\theta}_1 \right)$ $F f''\circledcirc$

ࠆࠀ

Lipschitz Functions

Gradient Descent Update: $\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$

Lipschitz Functions

$$
f(x) = x^2
$$

 $f'(x) = x$

Gradient Descent Update: $\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$

Need to assume that the function is Lipschitz (size of gradient is bounded): There is som<u>e G</u> s.t.:

$$
\forall \vec{\theta}: \quad \frac{\|\vec{\nabla} f(\vec{\theta})\|_2 \leq G \Leftrightarrow \forall \vec{\theta}_1, \vec{\theta}_2: \quad |f(\vec{\theta}_1) - f(\vec{\theta}_2)| \leq G \cdot \|\vec{\theta}_1 - \vec{\theta}_2\|_2
$$

Well-Behaved Functions

Definition – Convex Function: A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$
(1 - \lambda) \cdot f(\vec{\theta}_1) + \lambda \cdot f(\vec{\theta}_2) \ge f\left((1 - \lambda) \cdot \vec{\theta}_1 + \lambda \cdot \vec{\theta}_2\right)
$$

Corollary – Convex Function: A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$
f(\vec{\theta}_2) - f(\vec{\theta}_1) \geq \vec{\nabla} f(\vec{\theta}_1)^T \left(\vec{\theta}_2 - \vec{\theta}_1 \right)
$$

Definition – Lipschitz Function: A function $f : \mathbb{R}^d \to \mathbb{R}$ is *G*-Lipschitz if $\|\vec{\nabla} f(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.

GD Analysis – Convex Functions

GD Analysis Proof

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function *f*, GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G \sqrt{t}},$ and starting point within radius *R* of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.
$$

GD Analysis Proof

Theorem – GD on Convex Lipschitz Functions: For convex *G*-Lipschitz function *f*, GD run with $t \ge \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}},$
and starting point within radius *R* of θ_* , outputs $\hat{\theta}$ satisfying:
 $f(\hat{\theta}) \le f(\vec{\theta_*}) + \epsilon.$ and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon.
$$

