
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 22

1

Logistics

• Problem Set 5 is posted. It can be turned in up to 12/12 (next
Thursday) at 11:59pm with no penalty. No extensions will be
granted beyond this. The challenge problem is optional extra
credit.

• The final will be on 12/18 in Totman Gym, 10:30am-12:30pm.

• Additional final review office hours will be posted soon.

• See website/Canvas for final prep material.

2

Summary

Last Class:

• Finish up the power method.

• Krylov subspace methods.

• Connection between random walks and power method.

• Very brief intro to continuous optimization.

This Class:

• Multivariable calculus review

• Introduction to gradient descent. Motivation as a greedy
algorithm.

• Convex functions

• Analysis of gradient descent for Lipschitz, convex functions?

3

=

-

Mathematical Setup

Given some function f : Rd → R, find !θ! with:

f(!θ!) = min
"θ∈Rd

f(!θ)

+ ε

Typically up to some small approximation factor.

Often under some constraints:

• ‖!θ‖2 ≤ 1, ‖!θ‖1 ≤ 1.
• A!θ ≤ !b, !θTA!θ ≥ 0.
•
∑d

i=1
!θ(i) ≤ c.

4

(Inc,

Mathematical Setup

Given some function f : Rd → R, find !θ! with:

f(!θ!) = min
"θ∈Rd

f(!θ) + ε

Typically up to some small approximation factor.

Often under some constraints:

• ‖!θ‖2 ≤ 1, ‖!θ‖1 ≤ 1.
• A!θ ≤ !b, !θTA!θ ≥ 0.
•
∑d

i=1
!θ(i) ≤ c.

4

Mathematical Setup

Given some function f : Rd → R, find !θ! with:

f(!θ!) = min
"θ∈Rd

f(!θ) + ε

Typically up to some small approximation factor.

Often under some constraints:

• ‖!θ‖2 ≤ 1, ‖!θ‖1 ≤ 1.
• A!θ ≤ !b, !θTA!θ ≥ 0.
•
∑d

i=1
!θ(i) ≤ c.

4

= .

Why Continuous Optimization?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

• Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

• The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

• Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.

5

e -

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉

= !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d)

.

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

6

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉

= !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d)

.

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

6

[I-c,
-

(x ,i 07

xf@q4.o
>
→

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

6

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

6

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

6

-

diAnofnpreIiitn-
1RdolR@t4uie.i.
±*.

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

6

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) = L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

6

ftp.minfke)
f-(O) = D , yo):minflate

t o

Optimization in ML

LX,!y(!θ) =
n∑

i=1

$(M!θ(!xi), yi)

• Solving the final optimization problem has many different
names: likelihood maximization, empirical risk minimization,
minimizing training loss, etc.

• Generalization tries to explain why minimizing the loss LX,!y(!θ)
on the training points minimizes the loss on future test points.
I.e., makes us have good predictions on future inputs.

• Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

7

-

=

Optimization Algorithms

Choice of optimization algorithm for minimizing f(!θ) will depend on
many things:

• The form of f (in ML, depends on the model & loss function).

• Any constraints on !θ (e.g., ‖!θ‖ < c).

• Computational constraints, such as memory constraints.

LX,!y(!θ) =
n∑

i=1

$(M!θ(!xi), yi)

What are some popular optimization algorithms?

8

=

& stylistic
,
descent

Optimization Algorithms

Choice of optimization algorithm for minimizing f(!θ) will depend on
many things:

• The form of f (in ML, depends on the model & loss function).

• Any constraints on !θ (e.g., ‖!θ‖ < c).

• Computational constraints, such as memory constraints.

LX,!y(!θ) =
n∑

i=1

$(M!θ(!xi), yi)

What are some popular optimization algorithms?

8

apam printo fgradient hill climbingdescent)
brundhtwt

rebar-mead (daintier free)- 0 - attig plane
Ada-factor grid search
- -

Gradient Descent

Next few classes: Gradient descent (and some important variants)

• An extremely simple greedy iterative method, that can be
applied to almost any continuous function we care about
optimizing.

• Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

• At each step, tries to move towards the lowest nearby point in
the function that is can – in the opposite direction of the
gradient.

9

j
b j

f !
s

Multivariate Calculus Review

Let !ei ∈ Rd denote the ith standard basis vector,
!ei = [0, 0, 1, 0, 0, . . . , 0]︸ ︷︷ ︸

1 at position i

.

Partial Derivative:

∂f
∂!θ(i)

= lim
ε→0

f(!θ + ε · !ei)− f(!θ)
ε

.

Directional Derivative:

D"v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.

10

Multivariate Calculus Review

Let !ei ∈ Rd denote the ith standard basis vector,
!ei = [0, 0, 1, 0, 0, . . . , 0]︸ ︷︷ ︸

1 at position i

.

Partial Derivative:

∂f
∂!θ(i)

= lim
ε→0

f(!θ + ε · !ei)− f(!θ)
ε

.

Directional Derivative:

D"v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.

10

f .Rd-R

-

l:::::
$

Multivariate Calculus Review

Let !ei ∈ Rd denote the ith standard basis vector,
!ei = [0, 0, 1, 0, 0, . . . , 0]︸ ︷︷ ︸

1 at position i

.

Partial Derivative:

∂f
∂!θ(i)

= lim
ε→0

f(!θ + ε · !ei)− f(!θ)
ε

.

Directional Derivative:

D"v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.

10

0

Multivariate Calculus Review

Gradient: Just a ‘list’ of the partial derivatives.

!∇f(!θ) =





∂f
∂!θ(1)
∂f

∂!θ(2)
...
∂f

∂!θ(d)





Directional Derivative in Terms of the Gradient:

D!v f(!θ) = 〈!v, !∇f(!θ)〉.

11

f : 1122→ R DEDE1122

Multivariate Calculus Review

Gradient: Just a ‘list’ of the partial derivatives.

!∇f(!θ) =





∂f
∂!θ(1)
∂f

∂!θ(2)
...
∂f

∂!θ(d)





Directional Derivative in Terms of the Gradient:

D!v f(!θ) = 〈!v, !∇f(!θ)〉.

11

-

v N ' I I ,t VCD.¥ , t Vld)-¥6,

Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(!θ) for any !θ.

Gradient Evaluation: Can compute !∇f(!θ) for any !θ.

In neural networks:

• Function evaluation is called a forward pass (propogate an
input through the network).

• Gradient evaluation is called a backward pass (compute
the gradient via chain rule, using backpropagation).

12

=

Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(!θ) for any !θ.

Gradient Evaluation: Can compute !∇f(!θ) for any !θ.

In neural networks:

• Function evaluation is called a forward pass (propogate an
input through the network).

• Gradient evaluation is called a backward pass (compute
the gradient via chain rule, using backpropagation).

12

-

-

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1))

≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

13

r e - s -

f l i e s ,

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1))

≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

13

=

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ(i−1)) = lim
ε→0

f(!θ(i−1) + ε!v)− f(!θ(i−1))

ε
.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1))

≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

13

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ(i−1)) = lim
ε→0

f(!θ(i−1) + ε!v)− f(!θ(i−1))

ε
.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1))

≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

13

•
i s

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ(i−1)) = lim
ε→0

f(!θ(i−1) + ε!v)− f(!θ(i−1))

ε
.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1)) ≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

13

- pick to
minimize this

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ(i−1)) = lim
ε→0

f(!θ(i−1) + ε!v)− f(!θ(i−1))

ε
.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1)) ≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

13

-
minimize

✓=-Pflo")

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ(i−1)) = lim
ε→0

f(!θ(i−1) + ε!v)− f(!θ(i−1))

ε
.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1)) ≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

13I F
vs-pfffiP@i.E:&

Gradient Descent Psuedocode

Gradient Descent

• Choose some initialization !θ(0).
• For i = 1, . . . , t

• !θ(i) = !θ(i−1) − η∇f(!θ(i−1))

• Return !θ(t), as an approximate minimizer of f(!θ).

Step size η is chosen ahead of time or adapted during the
algorithm (details to come).

• For now assume η stays the same in each iteration.

14

4 ?No,IdxD

=

-

When Does Gradient Descent Work?

Gradient Descent Update: !θi+1 = !θi − η∇f(!θi)

15

• j ,
I non-mnveX
convex

function

000, af t) • →
02

p e r
• → ← oooo

QQ.E.jp""
plot" a b , a
spot ' o

g

Convexity

Definition – Convex Function: A function f : Rd → R is convex
if and only if, for any !θ1, !θ2 ∈ Rd and λ ∈ [0, 1]:

(1− λ) · f(!θ1) + λ · f(!θ2) ≥ f
(
(1− λ) · !θ1 + λ · !θ2

)

16

- - ax):X
- - fix)sx2

- I fix):1×1

§ n '" "Las g i f "(O.,# •
go.gg,-0M¥)

r a t

"¥
£gixaD

RAS'
(0%94%9)

Convexity

Corollary – Convex Function: A function f : Rd → R is convex if
and only if, for any !θ1, !θ2 ∈ Rd and λ ∈ [0, 1]:

f(!θ2)− f(!θ1) ≥ !∇f(!θ1)T
(
!θ2 − !θ1

)

17

-
m m

⇐ f ''6)s o

go,
\

:
620 Jpg

,
-flop#LHS

" "

'oh, I

Pf(9)(02-0,) d - i - i . .- a - . 002'
00,i----.;'

i

Lipschitz Functions

Gradient Descent Update:
!θi+1 = !θi − η∇f(!θi)

Need to assume that the function is Lipschitz (size of gradient
is bounded): There is some G s.t.:

∀!θ : ‖!∇f(!θ)‖2 ≤ G ⇔ ∀!θ1, !θ2 : |f(!θ1)− f(!θ2)| ≤ G · ‖!θ1 − !θ2‖2

18

t
t

'i.do
g,I→

Lipschitz Functions

Gradient Descent Update:
!θi+1 = !θi − η∇f(!θi)

Need to assume that the function is Lipschitz (size of gradient
is bounded): There is some G s.t.:

∀!θ : ‖!∇f(!θ)‖2 ≤ G ⇔ ∀!θ1, !θ2 : |f(!θ1)− f(!θ2)| ≤ G · ‖!θ1 − !θ2‖2

18

f (x)3×2
f '(x)= X

-

I -

Well-Behaved Functions

Definition – Convex Function: A function f : Rd → R is convex
if and only if, for any !θ1, !θ2 ∈ Rd and λ ∈ [0, 1]:

(1− λ) · f(!θ1) + λ · f(!θ2) ≥ f
(
(1− λ) · !θ1 + λ · !θ2

)

Corollary – Convex Function: A function f : Rd → R is convex if
and only if, for any !θ1, !θ2 ∈ Rd and λ ∈ [0, 1]:

f(!θ2)− f(!θ1) ≥ !∇f(!θ1)T
(
!θ2 − !θ1

)

Definition – Lipschitz Function: A function f : Rd → R is G-
Lipschitz if ‖!∇f(!θ)‖2 ≤ G for all !θ.

19

GD Analysis – Convex Functions

Assume that:

• f is convex.

• f is G-Lipschitz.

• ‖!θ1 − !θ∗‖2 ≤ R where !θ1 is the initialization point.

Gradient Descent

• Choose some initialization !θ1 and set η = R
G
√
t .

• For i = 1, . . . , t− 1

• !θi+1 = !θi − η!∇f(!θi)

• Return θ̂ = argmin!θ1,...,!θt f(
!θi).

20

=
÷¥÷

✓

,
bigger stepsY¥rk

-

H e steps i f steeper
- s - b m o r e itrations

-

f (Ot)

GD Analysis Proof

Theorem – GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t ≥ R2G2

ε2 iterations, η = R
G
√
t ,

and starting point within radius R of !θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f(!θ∗) + ε.

Step 1: For all i, f(!θi)− f(!θ∗) ≤ ‖!θi−!θ∗‖2
2−‖!θi+1−!θ∗‖2

2
2η + ηG2

2 . Visually:

21

GD Analysis Proof

Theorem – GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t ≥ R2G2

ε2 iterations, η = R
G
√
t ,

and starting point within radius R of !θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f(!θ∗) + ε.

Step 1: For all i, f(!θi)− f(!θ∗) ≤ ‖!θi−!θ∗‖2
2−‖!θi+1−!θ∗‖2

2
2η + ηG2

2 . Visually:

21

= -
- - - -

• f o i l l small

¥ 6 puts:B'-AZ

t÷÷¥

