COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.
Lecture 22

- Problem Set 5 is posted. It can be turned in up to 12/12 (next
Thursday) at 11:59pm with no penalty. No extensions will be
granted beyond this. The challenge problem is optional extra

credit.
- The final will be on 12/18 in Totman Gym, 10:30am-12:30pm.
- Additional final review office hours will be posted soon.

- See website/Canvas for final prep material.

Last Class:

- Finish up the power method.
P iy
- Krylov subspace methods.

- Connection between random walks and power method.

- Very brief intro to continuous optimization.

This Class:

- Multivariable calculus review

- Introduction to gradient descent. Motivation as a greedy
algorithm.

- Convex functions

- Analysis of gradient descent ipschitz, convex functions?

Mathematical Setup

(e

Given some function f: RY — R, find 6, with:

—

in ()

m
OcRd

f(é;) =

Mathematical Setup

Given some function f: RY — R, find 6, with:

in f(0) + ¢

m
OcRd

f(é;) =

Typically up to some small approximation factor.

Mathematical Setup

Given some function f: RY — R, find 6, with:

f(6,) = min f(6) + ¢
OcRd

Typically up to some small approximation factor.
Often under some constraints:

16l <1, 18] < 1.
- AG<b 6TA6>0.

L) <c

Why Continuous Optimization?

Modern machine learning centers around continuous optimization.
Typical Set Up: (supervised machine learning)
-+ Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
O neural network, coefficients in a linearfamction or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.

Optimization in ML

Example: Linear Regression

Optimization in ML

Example: Linear Regression

Model: My : RY — R with Mz(X) & (6, %)

[I‘QEJ <><|/97
¥, 07

Optimization in ML

Example: Linear Regression

Model: My : RY — R with My(X) & (4,%) = 6(1)-X(1) + + 6(d) - X(d).

Optimization in ML

Example: Linear Regression
Model: My : RY — R with My(X) & (4,%) = 6(1)-X(1) + + 6(d) - X(d).

Parameter Vector: § € RY (the regression coefficients)

Optimization in ML

Example: Linear Regression
Model: My : RY — R with My(X) & (4,%) = 6(1)-X(1) + + 6(d) - X(d).

Parameter Vector: § € RY (the regression coefficients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"xd) and la%wf\% ...,yn €R find 4,
minimizing the loss function:

= ZE(\U Vi)

i=1 k[.\\r\b
where ¢ is some measurement of how far Mz(X;) is from y;.

Optimization in ML

Example: Linear Regression

Model: My : RY — R with My(X) & (4,%) = 6(1)-X(1) + + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefficients)

Optimization Problem: Given data points (training points) Xi, ..., X,

(the rows of data matrix X € R"*9) and labels y1,...,y, € R, find g,

minimizing the loss function:
n

L(G,X,) = Z UMg(X)), Vi)

i=1

where ¢ is some measurement of how far Mz(X;) is from y;.

UMK, Vi) = (Mg(X) — y,~)2 (least squares regression)

cyie {—1,1} and E(Mé‘()?,),y,) =In (1 + exp(—y,-Md)?,-))) (lOgiStiC
regression)

Optimization in ML

Example: Linear Regression
Model: My : RY — R with My(X) & (4,%) = 6(1)-X(1) + + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefficients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels y1,...,y, € R, find g,
minimizing the loss function:

e R
£(8) ’:Q.QL("’X’”‘?(M"“’)’” fle)? o A

where ¢ is some measurement of how far Mz(X;) is from y;.

UMK, Vi) = (Mg(X) — y,~)2 (least squares regression)
cyie {—1,1} and E(Mé‘()?,),y,) =In (1 + exp(—y,-Md)?,-))) (lOgiStiC
regression)

£
g °

Optimization in ML

- Solving the final optimization problem has many different
names: likelihood maximization, empirical risk minimization,
minimizing training loss, etc.

=

- Generalization tries to explain why minimizing the loss Ly #(6)
on the training points minimizes the loss on future test points.
l.e., makes us have good predictions on future inputs.

- Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

Optimization Algorithms

—

Choice of optimization algorithm for minimizing f(6) will depend on
many things:
- The form of f (in ML, depends on the model & loss function).
- Any constraints on 6 (e.g, ||4]| < ©).
7

- Computational constraints, such as memory constraints.

Optimization Algorithms

Choice of optimization algorithm for minimizing f(6) will depend on
many things:

- The form of f (in ML, depends on the model & loss function).

- Any constraints on 6 (e.g, ||4]| < ©).

- Computational constraints, such as memory constraints.
n
= Ze(Ma()?«) Yi)
i=1

What are some popul ar tmuaiwg&sa lgorithms?
apam (v, 2 9 5 M
/\Q_Baf - ”‘@G‘i (&V.\AA\\M (ZD*QD :*!(‘O e
0- oA P
Ale-foder gl smnln

8

Gradient Descent

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be
applied to almost any continuous function we care about
optimizing.

- Often not the ‘best’ choice for any given function, but it is the

approach of choice in ML since it is simple, general, and often
works very well.

- At each step, tries to move towards the lowest nearby point in
the function that is can - in the opposite direction of the
gradient.

Multivariate Calculus Review

Let &; € RY denote the (" standard basis vector,
& =1[0,0,1,0,0,...,0].

1 at position i

Multivariate Calculus Review

Let &; € RY denote the (" standard basis vector,
& =1[0,0,1,0,0,...,0].

1 at position i J

Partial Derivative: WC\ W\ —]R

Of . [0+ &) D)
_a&(,‘) e—0 € '
0)
o)
Oty

8(_'1 + I)

Multivariate Calculus Review

Let &; € RY denote the (" standard basis vector,
& =1[0,0,1,0,0,...,0].

1 at position i

Partial Derivative:

Of _ . ff+e-&)—f(6)
o6(i) =0 €
Directional Derivative:

0 16) — tim T KD~ 10)

Multivariate Calculus Review

PR = g DrBeR”

Gradient: Just a ‘list’ of the partial derivatives.

1

Multivariate Calculus Review

Gradient: Just a ‘list’ of the partial derivatives.

Vi) = | 7

Directional Derivative in Terms of the Gradient:
Dy f(6) = (7, VA(0))-

f OF s
VO gt N Gy - VW 300)

1

Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(6) for any .

.

Gradient Evaluation: Can compute V£(f) for any .

12

Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(6) for any .
s

Gradient Evaluation: Can compute V£(f) for any .

In neural networks:

- Function evaluation is called a forward pass (propogate an
input through the network).

+ Gradient evaluation is called a backward pass (compute
the gradient via chain rule, using backpropagation).

12

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:

i 7(0) i i o) — gli—1) v ni
Starting at 0 g in eachql.teratpn lgtj_ =40 + fzv,.where nis a
(small) ‘step size’ and V is a direction chosen to minimize

)

—

13

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §0) = 9U=" ++ 5y where n is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

13

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §0) = 9U=" ++ 5y where n is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

Dy F(AY) = lim FOUD + €7) — F(8V D)

e—0 €

13

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §0) = 9U=" ++ 5y where n is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

D- f(é’(/’—ﬂ) = lim 9_’(]—7) +ev _f(g(i_1))
7 =

e—0

So for small »: 8i

FIV) —) = FOUD +09) — F(0V)

13

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §0) = 9U=" ++ 5y where n is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

Dy F(AY) = lim FOUD + €7) — F(8V D)

e—0 €

So for small #:
FOV) = FOU0) = {80 + @) — SOV - Def(6V)
- ~—
Qe N 1o

A e, s

13

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §0) = 9U=" ++ 5y where n is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

Dy F(AY) = lim FOUD + €7) — F(8V D)

e—0 €
So for small #:
FED) = (VD) = F8U) 4) = FOUD) - DOV
=7+ {(V, VA).
w
mata Y,

v: -Fle)

13

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §0) = 9U=" ++ 5y where n is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

Dy F(AY) = lim FOUD + €7) — F(8V D)

e—0 €
So for small #:
FE0) = FEUD) = F@D -+ @) — FOUD) & - D)
= - (7, VAH)).

We want to choose vV minimizing (v, VA(AU=)) - i.e, pointing ip the |
direction of V(=) but with the opposite sign. ZW/PL = {%V"Nk:\‘\

i) \/ - F(&i—)
e v

13

Gradient Descent Psuedocode

Gradient Descent //O:N@‘/wb
- Choose some initialization 4(%.
- Fori=1,...,t
- g0 = gU=1) — pu(el-1)

- Return 1, as an approximate minimizer of f(6).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come).

- For now assume 7 stays the same in each iteration.

14

When Does Gradient Descent Work?

®\
@?\w G g eR VF(O) ER Aon KN
SRR

Gradient Descent Update: 0, = 0, — nVf(0;)

15

Definition - Convex Function: A function f: R - R? =R R is convex
if and only if, for any 61,6, € R? and A € [0, E ﬂX}' XZ
L X
- (l:w)+>\'f(92gf((1*>\)~91+A-92> LA
| N [~
) / IiE \/\/®
& A vF(09 o
161 ?LD z
(T) £(0
$ LHS
bo—
AN S

<

o o)

‘

16

Corollary - Convex Function: A function f: R? — R is convex if

amy if, for any 6;,6, € R? dph a0\
]
iy -0y > oy (6,-5) & F ©)

N\
S

&

" f(6)
- FY-(18) L WS
T . —
VR (6,0) \E' (S

© px - V!
7] ; }

6,

—>

Lipschitz Functions
BER Vf(O)ER

A

\ Gradient Descent Update:
f(@) i = 0; — V(9
Y
< i >
%
v 0*

18

Lipschitz Functions
BER Vf(O)ER

L()” -

A

IR
Gradient Descent Update:
f(6) 01 = 0; — nVf(0))
v 0*

Need to assume that the function is Lipschitz (size of gradient
is bounded): There is some G st

V0 (IVAO)2 < G Vo6, If(6h) — f(Bh) < G- |6 — B
-_—

R

18

Well-Behaved Functions

Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 6,0, € R? and \ € [0, 1];

(1=X) B+ A @) 2 F((1=2) -6+ 2 &)

Corollary - Convex Function: A function f: RY — R is convex if
and only if, for any 6,6, € R? and X € [0,1]:

f8:) - f(6) = VG (6 -)

Definition - Lipschitz Function: A function f : R — R is G-
Lipschitz if || VA(0), < G for all 6.

19

GD Analysis - Convex Functions

Assume that:

- fis convex. O
—_—

- fis G-lipschitz
. Hé} — §*||2 < R where @ is the initialization point.
Zxllz = R WIIETE U 1> IE THLdRAdEoT .
Gradient Descent / v RIS
R

- Choose some initialization 51 and setn = N

CFori=1,...,t—1 qt\
\

i =0 - V10) f*““‘jo s 'léi iW
Return § = arg min9~1 """ @f(é;) a2 % . \AY\J
__’_/,,/G

‘P((%) 20

GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n = %,

and starting point within radius R of d,, outputs @ satisfying:

f(0) < f(0.) +e.

21

GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For_convex G-
Lipschitz function f, GD run with t > Rifz iterations, n = %,

and starting point within radiumutputs 6 satisfying:

f(0) < f(9.) +e.

step 1: For all i, f(7) — f(f.) < LSOl 4 18 visually
ksnm“

Aus B-pE

21

