
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 21

1

Logistics

• Problem Set 4 due Monday.

• No class or office hours next week. No quiz due.

• Office hours tomorrow 10am-11am in CS 142.

• Practice final exams have been posted in Canvas. I will release a
more complete study guide with additional practice questions
son.

2

Summary

Last Class: Fast computation of the SVD/eigendecomposition.

• Power method for approximating the top eigenvector of a
matrix.

• Start on analysis of convergence.

This Class (+ Rest of Semester):

• Finish up power method analysis.

• General iterative algorithms for optimization, specifically
gradient descent and its variants.

• What are these methods, when are they applied, and how do
you analyze their performance?

• Small taste of what you can find in COMPSCI 651.

3

Power Method Wrap Up

3

Power Method

Basic Power Method:

• Initialize: Choose z⃗(0) randomly. E.g. z⃗(0)(i) ∼ N (0, 1).
• For i = 1, . . . , t

• z⃗(i) := A · z⃗(i−1)

• z⃗i := z⃗(i)
∥⃗z(i)∥2

.
• Return z⃗t.

4

Power Method Convergence Rate

z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d =⇒ z⃗(t) = c1λt
1v⃗1 + c2λt

2v⃗2 + . . .+ cdλt
dv⃗d

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(1/δ). Or t = ln(1/δ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so z⃗(t) is very close to v⃗1?

v⃗1 : top eigenvector, being computed, z⃗(i) : iterate at step i, converging to v⃗1 .
λ1, λ2, . . . λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

5

Random Initialization

Claim: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d, with very high probability, for all i:

O(1/d2) ≤ |ci| ≤ O(log d)

Corollary:

max
j

∣∣∣∣ cjc1
∣∣∣∣ ≤ O(d2 log d).

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . v⃗1 : top eigenvec-
tor, being computed, z⃗(i) : iterate at step i, converging to v⃗1 .

6

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d, with very high probability,
maxj

∣∣∣ cjc1 ∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λt

i
λt
1

∣∣∣ ≤ δ for all i.

z⃗(t) :=
c1λt

1v⃗1 + . . .+ cdλt
dv⃗d

∥c1λt
1v⃗1 + . . .+ cdλt

dv⃗d∥2
=⇒

∥⃗z(t) − v⃗1∥2 ≤
∥∥∥∥c1λt

1v⃗1 + . . .+ cdλt
dv⃗d

∥c1λt
1v⃗1∥2

− v⃗1
∥∥∥∥
2

=

∥∥∥∥c2λt
2

c1λt
1
v⃗2 + . . .+

cdλt
d

λt
1
v⃗d
∥∥∥∥
2
=

∣∣∣∣c2λt
2

c1λt
1

∣∣∣∣+ . . .+

∣∣∣∣cdλt
d

λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ϵ
d3 log d

)
gives ∥⃗z(t) − v⃗1∥2 ≤ ϵ.

A ∈ Rd×d : input with eigenvalues λ1 . . . , λd and eigenvectors v⃗1, . . . , v⃗d . z⃗(i) :
iterate at step i. c1, . . . , cd : coefficients of z⃗(0) in the eigenvector basis. 7

Power Method Theorem

Theorem (Basic Power Method Convergence)
Let γ = |λ1|−|λ2|

|λ1| be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector v⃗(0) then, with high probability, after t = O

(
ln(d/ϵ)

γ

)
steps:

∥⃗z(t) − v⃗1∥2 ≤ ϵ.

Total runtime: O(t) matrix-vector multiplications. If A = XTX:

O
(
nnz(X) · ln(d/ϵ)

γ
·
)

= O
(
nd · ln(d/ϵ)

γ

)
.

How is ϵ dependence?

How is γ dependence?

8

Krylov Subspace Methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ϵ)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt
1 and λt

i .

• Krylov methods: apply a better degree t polynomial Tt(·) to the
eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

9

krylov subspace methods

vs.

Optimal ‘jump’ polynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.

10

Generalizations to Larger k

• Block Power Method (a.k.a. Simultaneous Iteration, Subspace
Iteration, or Orthogonal Iteration)

• Block Krylov methods

Runtime: O
(
ndk · ln(d/ϵ)√

γ

)
to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O
(
ndk · ln(d/ϵ)√

ϵ

)
if you just want a set of vectors that gives an ϵ-optimal low-rank
approximation when you project onto them.

11

Connection Between Random Walks,
Eigenvectors, and Power Method

12

Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex. 13

Connection to Random Walks

Let p⃗(t) ∈ Rn have ith entry p⃗(t)
i = Pr(walk at node i at step t).

• Initialize: p⃗(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= z⃗Tp⃗(t−1)

where z⃗(j) = 1
degree(j) for all j ∈ neigh(i), z⃗(j) = 0 for all

j /∈ neigh(i).

• z⃗ is the ith row of the right normalized adjacency matrix AD−1.

• p⃗(t) = AD−1p⃗(t−1) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

p⃗(0)

14

Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

p⃗(t) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

p⃗(0).

D−1/2p⃗(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2p⃗(0)).

• D−1/2p⃗(t) is exactly what would obtained by applying t/2
iterations of power method to D−1/2p⃗(0)!

• Will converge to the top eigenvector of the normalized
adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D−1/2AD−1/2. The spectral gap. 15

Continuous Optimization and Gradient Descent

15

Discrete vs. Continuous Optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

• Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

• Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

• Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

• Unconstrained convex and non-convex optimization.

• Linear programming, quadratic programming, semidefinite
programming

16

Continuous Optimization Examples

17

