COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.
Lecture 21



- Problem Set 4 due Monday.
- No class or office hours next week. No quiz due.
- Office hours tomorrow 10am-11am in CS 142.

- Practice final exams have been posted in Canvas. | will release a
more complete study guide with additional practice questions
son.



Last Class: Fast computation of the SVD/eigendecomposition.

- Power method for approximating the top eigenvector of a
matrix.

- Start on analysis of convergence.
This Class (+ Rest of Semester):

- Finish up power method analysis.

- General iterative algorithms for optimization, specifically
gradient descent and its variants.

- What are these methods, when are they applied, and how do
you analyze their performance?

- Small taste of what you can find in COMPSCI 651.



Power Method Wrap Up



Power Method

Basic Power Method:

- Initialize: Choose 219 randomly. E.g. Z9(j) ~ A(0,1).

- Fori=1,...,t
- 20 = A 207D
AN )
4=
- Return z;.



Power Method Convergence Rate

2(0) = C1\71 + C2\72 + ...+ Cd\7d — 2(t) = C1/\%\71 + CQ/\E\?Z + ...+ Cd/\ng

Write [Az = (1—7)[M| for ‘gap’ v = W

How many iterations t does it take to have |A\;|' < 6 - |\ | for 6 > 07
Mol = (1=)" (A
( SORARIR PV
<e |)\1|t
So it suffices to set yt = In(1/§). Ort = @
How small must we set ¢ to ensure that ¢;\! dominates all other
components and so 2 is very close to v;?

V1: top eigenvector, being computed, Z1): iterate at step i, converging to .
A1, A2, ... Ap: eigenvalues of A, v = J%\l’\—zl: eigengap controlling conver-
gence rate




Random Initialization

Claim: When z(9 is chosen with random Gaussian entries, writing
700 = V) 4+ oV + ... + c4Vy, with very high probability, for all i:

0(1/d”) < |ci| < O(log d)

Corollary:
G

< 0(d*log d).
Gy

max
J

A € RY%d: input matrix with eigendecomposition A = VAV’. ¥;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to .




Random Initialization

Claim 1: When z(9 is chosen with random Gaussian entries, writing
70 = c1\71 + C)Vy + ... + C4Vy, with very high probability,

max; | £ (d? Iogd)
IS by .
Claim 2: For gap v = | WI‘A || 2l andt = (W o (L.
A1) . C1)\%\71 + ...+ Cd)\gvd
e+ +w&%m
- AW 4. gy L
Hf(t)_v1||2§ 1 — d dd—V1
[c1AVa |2 2
oA CaAl CoA CaA, 5
= || == R V, —|+... + <4§-0(dlogd) -d.
CAL 2 XL T N N | S0 0dlegd)
Setting § = O (m) gives |70 — 4], < e.
A € R9%d: input with eigenvalues A;..., Ay and eigenvectors , ..., ¥,. Z():

iterate at step i. ¢y, . . ., Cq: coefficients of 7% in the eigenvector basis. 7




Power Method Theorem

Theorem (Basic Power Method Convergence)

Lety = % be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector V) then, with high probability, after t = O ('”(i/e)) steps:

120 — 7|, <.

Total runtime: O(t) matrix-vector multiplications. If A = X'X:

0 (nnz(X) : '”(d/g)-) =0 (nd : '”(d/e)> .

Y Y
How is e dependence?

How is v dependence?



Krylov Subspace Methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need
t=0 (%) steps for the same guarantee.

Main Idea: Need to separate \; from \; for i > 2.

- Power method: power up to A} and AL

- Krylov methods: apply a better degree t polynomial T¢(+) to the
eigenvalues to separate Ti(\1) from T(\).

- Still requires just t matrix vector multiplies. Why?



krylov subspace methods

24
4

Optimal jump’ polynomial in general is given by a degree t

Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.

10



Generalizations to Larger k

Block Power Method (a.k.a. Simultaneous Iteration, Subspace
Iteration, or Orthogonal Iteration)

Block Krylov methods
Runtime: O (ndk In(d/e) )
to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O(ndl? '"\%))

if you just want a set of vectors that gives an e-optimal low-rank
approximation when you project onto them.

n



Connection Between Random Walks,
Eigenvectors, and Power Method

12



Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex. 3



Connection to Random Walks

Let p® € R” have " entry 5,@ = Pr(walk at node i at step t).

- Initialize: p(® =[1,0,0,...,0].

- Update:
Pr(walk at i at step t) = Z Pr(walk at j at step t-1) - m
jeneigh(i)
=7pED

where Z(j) =
j & neigh(i).

- Zis the i"" row of the right normalized adjacency matrix AD~".

for allj € neigh(i), Z(j) = 0 for all

deg ree()

- B = AD~5¢= = AD~'AD"'...AD"' 5(©)

ttimes

14



Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the i" entry of

g =aAD'AD~"...AD™' 50,

ttimes

D—'I/Zﬁ(t) — (D—1/2AD—1/2)(D—1/2AD—'|/2) o (D—'I/zAD—W/Z)(D—1/2[‘)’(O)).

t times

- D250 is exactly what would obtained by applying t/2
iterations of power method to D~/25(0)

- Will converge to the top eigenvector of the normalized
adjacency matrix D—'/2AD~"/2. Stationary distribution.

- Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D~"/2AD~"2. The spectral gap. 15



Continuous Optimization and Gradient Descent



Discrete vs. Continuous Optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
- Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

- Unconstrained convex and non-convex optimization.

- Linear programming, quadratic programming, semidefinite
programming



Continuous Optimization Examples

AN OeR = 6 € R

6 € R?




