
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 21

1

Logistics

• Problem Set 4 due Monday.

• No class or office hours next week. No quiz due.

• Office hours tomorrow 10am-11am in CS 142.

• Practice final exams have been posted in Canvas. I will release a
more complete study guide with additional practice questions
son.

2

÷
O N .

Summary

Last Class: Fast computation of the SVD/eigendecomposition.

• Power method for approximating the top eigenvector of a
matrix.

• Start on analysis of convergence.

This Class (+ Rest of Semester):

• Finish up power method analysis.

• General iterative algorithms for optimization, specifically
gradient descent and its variants.

• What are these methods, when are they applied, and how do
you analyze their performance?

• Small taste of what you can find in COMPSCI 651.

3

-

✓Kayla
methods

-
Connections to randamaalksl

Markovchains

-

Power Method Wrap Up

3

Power Method

Basic Power Method:

• Initialize: Choose !z(0) randomly. E.g. !z(0)(i) ∼ N (0, 1).
• For i = 1, . . . , t

• !z(i) := A ·!z(i−1)

• !zi := !z(i)
‖!z(i)‖2

.
• Return !zt.

4

A e 1/21×2

= f÷÷¥
÷I

Power Method Convergence Rate

!z(0) = c1!v1 + c2!v2 + . . .+ cd!vd =⇒ !z(t) = c1λt
1!v1 + c2λt

2!v2 + . . .+ cdλt
d!vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?

|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(1/δ). Or t = ln(1/δ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so !z(t) is very close to !v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

5

[£ ' I i " § ' boss;¥§uy)
- -

- - -
i n 1

v .§
'

#'V' d-yjinltssldiltfs.bg#
z't) : f 4-ptsd ight)

j u i c y t-lofty) s look)

r ,
t ' toyCty)?1g(Yt)

Power Method Convergence Rate

!z(0) = c1!v1 + c2!v2 + . . .+ cd!vd =⇒ !z(t) = c1λt
1!v1 + c2λt

2!v2 + . . .+ cdλt
d!vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(1/δ). Or t = ln(1/δ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so !z(t) is very close to !v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

5

Power Method Convergence Rate

!z(0) = c1!v1 + c2!v2 + . . .+ cd!vd =⇒ !z(t) = c1λt
1!v1 + c2λt

2!v2 + . . .+ cdλt
d!vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(1/δ). Or t = ln(1/δ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so !z(t) is very close to !v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

5

m
M
E yt

Power Method Convergence Rate

!z(0) = c1!v1 + c2!v2 + . . .+ cd!vd =⇒ !z(t) = c1λt
1!v1 + c2λt

2!v2 + . . .+ cdλt
d!vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(1/δ). Or t = ln(1/δ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so !z(t) is very close to !v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

5

Power Method Convergence Rate

!z(0) = c1!v1 + c2!v2 + . . .+ cd!vd =⇒ !z(t) = c1λt
1!v1 + c2λt

2!v2 + . . .+ cdλt
d!vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(1/δ). Or t = ln(1/δ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so !z(t) is very close to !v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

5

won'tknowy

•

- - - = 4 ¥
i n(Fy)

Power Method Convergence Rate

!z(0) = c1!v1 + c2!v2 + . . .+ cd!vd =⇒ !z(t) = c1λt
1!v1 + c2λt

2!v2 + . . .+ cdλt
d!vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(1/δ). Or t = ln(1/δ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so !z(t) is very close to !v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

5

-0,8""

=

Random Initialization

Claim: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1!v1 + c2!v2 + . . .+ cd!vd, with very high probability, for all i:

O(1/d2) ≤ |ci| ≤ O(log d)

Corollary:

max
j

∣∣∣∣
cj
c1

∣∣∣∣ ≤ O(d2 log d).

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . !v1: top eigenvec-
tor, being computed,!z(i) : iterate at step i, converging to !v1.

6

NO,'D NTi) -

#c isO
- - I m i t a t i o n boundanti.cm/

cntrutin,bqsd

on
±

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1!v1 + c2!v2 + . . .+ cd!vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

!z(t) :=
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1 + . . .+ cdλt

d!vd‖2

=⇒

‖!z(t) −!v1‖2 ≤
∥∥∥∥
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1‖2

−!v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
!v2 + . . .+

cdλt
d

λt
1
!vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖!z(t) −!v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 7

-

- -

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1!v1 + c2!v2 + . . .+ cd!vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

!z(t) :=
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1 + . . .+ cdλt

d!vd‖2

=⇒

‖!z(t) −!v1‖2 ≤
∥∥∥∥
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1‖2

−!v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
!v2 + . . .+

cdλt
d

λt
1
!vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖!z(t) −!v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 7

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1!v1 + c2!v2 + . . .+ cd!vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

!z(t) :=
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1 + . . .+ cdλt

d!vd‖2
=⇒

‖!z(t) −!v1‖2 ≤
∥∥∥∥
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1‖2

−!v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
!v2 + . . .+

cdλt
d

λt
1
!vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖!z(t) −!v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 7

qq.si@
""¥±*⇒.nl

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1!v1 + c2!v2 + . . .+ cd!vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

!z(t) :=
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1 + . . .+ cdλt

d!vd‖2
=⇒

‖!z(t) −!v1‖2 ≤
∥∥∥∥
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1‖2

−!v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
!v2 + . . .+

cdλt
d

λt
1
!vd

∥∥∥∥
2

=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖!z(t) −!v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 7

I

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1!v1 + c2!v2 + . . .+ cd!vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

!z(t) :=
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1 + . . .+ cdλt

d!vd‖2
=⇒

‖!z(t) −!v1‖2 ≤
∥∥∥∥
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1‖2

−!v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
!v2 + . . .+

cdλt
d

λt
1
!vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣

≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖!z(t) −!v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 7

O 0 0

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1!v1 + c2!v2 + . . .+ cd!vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

!z(t) :=
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1 + . . .+ cdλt

d!vd‖2
=⇒

‖!z(t) −!v1‖2 ≤
∥∥∥∥
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1‖2

−!v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
!v2 + . . .+

cdλt
d

λt
1
!vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖!z(t) −!v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 7

-

⇐Of ' c ,4

' j a i l '04451) £0431,1)

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1!v1 + c2!v2 + . . .+ cd!vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

!z(t) :=
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1 + . . .+ cdλt

d!vd‖2
=⇒

‖!z(t) −!v1‖2 ≤
∥∥∥∥
c1λt

1!v1 + . . .+ cdλt
d!vd

‖c1λt
1!v1‖2

−!v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
!v2 + . . .+

cdλt
d

λt
1
!vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖!z(t) −!v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 7

-

1M¥= log(d421)
- F i l b y

Power Method Theorem

Theorem (Basic Power Method Convergence)
Let γ = |λ1|−|λ2|

|λ1| be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector !v(0) then, with high probability, after t = O

(
ln(d/ε)

γ

)
steps:

‖!z(t) −!v1‖2 ≤ ε.

Total runtime: O(t) matrix-vector multiplications. If A = XTX:

O
(
nnz(X) · ln(d/ε)

γ
·
)

= O
(
nd · ln(d/ε)

γ

)
.

How is ε dependence?

How is γ dependence?

8

-
-

Power Method Theorem

Theorem (Basic Power Method Convergence)
Let γ = |λ1|−|λ2|

|λ1| be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector !v(0) then, with high probability, after t = O

(
ln(d/ε)

γ

)
steps:

‖!z(t) −!v1‖2 ≤ ε.

Total runtime: O(t) matrix-vector multiplications. If A = XTX:

O
(
nnz(X) · ln(d/ε)

γ
·
)

= O
(
nd · ln(d/ε)

γ

)
.

How is ε dependence?

How is γ dependence?

8

xyz)
- -

and)
←

0(nd) f r fulleinGump.

Power Method Theorem

Theorem (Basic Power Method Convergence)
Let γ = |λ1|−|λ2|

|λ1| be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector !v(0) then, with high probability, after t = O

(
ln(d/ε)

γ

)
steps:

‖!z(t) −!v1‖2 ≤ ε.

Total runtime: O(t) matrix-vector multiplications. If A = XTX:

O
(
nnz(X) · ln(d/ε)

γ
·
)

= O
(
nd · ln(d/ε)

γ

)
.

How is ε dependence?

How is γ dependence?

8

h e y
good,

not great

Krylov Subspace Methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ε)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt
1 and λt

i .

• Krylov methods: apply a better degree t polynomial Tt(·) to the
eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

9

- - -

I

Krylov Subspace Methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ε)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt
1 and λt

i .

• Krylov methods: apply a better degree t polynomial Tt(·) to the
eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

9

Krylov Subspace Methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ε)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt
1 and λt

i .

• Krylov methods: apply a better degree t polynomial Tt(·) to the
eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

9

Krylov Subspace Methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ε)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt
1 and λt

i .

• Krylov methods: apply a better degree t polynomial Tt(·) to the
eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

9

- # ⇒x t
-

Krylov Subspace Methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ε)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt
1 and λt

i .

• Krylov methods: apply a better degree t polynomial Tt(·) to the
eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

9

-
C ,X t C z X-t. . . G Xt

c , Ar" t c ,Alvot . . . (+AtVo

krylov subspace methods

vs.

Optimal ‘jump’ polynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.

10

di
• • A ,

* a .

Err""
. .

T t(x)

e .
iE% - B
Xt 13 Az,i z

, o

/ X X
eigerwhees

Generalizations to Larger k

• Block Power Method (a.k.a. Simultaneous Iteration, Subspace
Iteration, or Orthogonal Iteration)

• Block Krylov methods

Runtime: O
(
ndk · ln(d/ε)√

γ

)

to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O
(
ndk · ln(d/ε)√

ε

)

if you just want a set of vectors that gives an ε-optimal low-rank
approximation when you project onto them.

11

a

Generalizations to Larger k

• Block Power Method (a.k.a. Simultaneous Iteration, Subspace
Iteration, or Orthogonal Iteration)

• Block Krylov methods

Runtime: O
(
ndk · ln(d/ε)√

γ

)

to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O
(
ndk · ln(d/ε)√

ε

)

if you just want a set of vectors that gives an ε-optimal low-rank
approximation when you project onto them.

11

A¥"n o zsorth(Az)
-

=
-

-

Connection Between Random Walks,
Eigenvectors, and Power Method

12

Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.

13

Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.

13

- -

Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.

13

Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.

13

Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.

13

P""I:)
•

0"
""%) I f
p i
§§
)

Connection to Random Walks

Let !p(t) ∈ Rn have ith entry !p(t)
i = Pr(walk at node i at step t).

• Initialize: !p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= !zT!p(t−1)

where !z(j) = 1
degree(j) for all j ∈ neigh(i), !z(j) = 0 for all

j /∈ neigh(i).

• !z is the ith row of the right normalized adjacency matrix AD−1.

• !p(t) = AD−1!p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0)

14

- . -

Connection to Random Walks

Let !p(t) ∈ Rn have ith entry !p(t)
i = Pr(walk at node i at step t).

• Initialize: !p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= !zT!p(t−1)

where !z(j) = 1
degree(j) for all j ∈ neigh(i), !z(j) = 0 for all

j /∈ neigh(i).

• !z is the ith row of the right normalized adjacency matrix AD−1.

• !p(t) = AD−1!p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0)

14

Connection to Random Walks

Let !p(t) ∈ Rn have ith entry !p(t)
i = Pr(walk at node i at step t).

• Initialize: !p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= !zT!p(t−1)

where !z(j) = 1
degree(j) for all j ∈ neigh(i), !z(j) = 0 for all

j /∈ neigh(i).

• !z is the ith row of the right normalized adjacency matrix AD−1.

• !p(t) = AD−1!p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0)

14

--
¥ogi

Connection to Random Walks

Let !p(t) ∈ Rn have ith entry !p(t)
i = Pr(walk at node i at step t).

• Initialize: !p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= !zT!p(t−1)

where !z(j) = 1
degree(j) for all j ∈ neigh(i), !z(j) = 0 for all

j /∈ neigh(i).

• !z is the ith row of the right normalized adjacency matrix AD−1.

• !p(t) = AD−1!p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0)

14

Codoo'fo's.]
-

Connection to Random Walks

Let !p(t) ∈ Rn have ith entry !p(t)
i = Pr(walk at node i at step t).

• Initialize: !p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= !zT!p(t−1)

where !z(j) = 1
degree(j) for all j ∈ neigh(i), !z(j) = 0 for all

j /∈ neigh(i).

• !z is the ith row of the right normalized adjacency matrix AD−1.

• !p(t) = AD−1!p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0)

14

["I"'":$:[⇐"Y
-

Connection to Random Walks

Let !p(t) ∈ Rn have ith entry !p(t)
i = Pr(walk at node i at step t).

• Initialize: !p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= !zT!p(t−1)

where !z(j) = 1
degree(j) for all j ∈ neigh(i), !z(j) = 0 for all

j /∈ neigh(i).

• !z is the ith row of the right normalized adjacency matrix AD−1.

• !p(t) = AD−1!p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0)

14

- -

Connection to Random Walks

Let !p(t) ∈ Rn have ith entry !p(t)
i = Pr(walk at node i at step t).

• Initialize: !p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= !zT!p(t−1)

where !z(j) = 1
degree(j) for all j ∈ neigh(i), !z(j) = 0 for all

j /∈ neigh(i).

• !z is the ith row of the right normalized adjacency matrix AD−1.

• !p(t) = AD−1!p(t−1) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0)

14

Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

!p(t) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0).

D−1/2!p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2!p(0)).

• D−1/2!p(t) is exactly what would obtained by applying t/2
iterations of power method to D−1/2!p(0)!

• Will converge to the top eigenvector of the normalized
adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D−1/2AD−1/2. The spectral gap.

15

Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

!p(t) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0).

D−1/2!p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2!p(0)).

• D−1/2!p(t) is exactly what would obtained by applying t/2
iterations of power method to D−1/2!p(0)!

• Will converge to the top eigenvector of the normalized
adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D−1/2AD−1/2. The spectral gap.

15

D''" ' µ
- - j i
(t steep pou r method

Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

!p(t) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0).

D−1/2!p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2!p(0)).

• D−1/2!p(t) is exactly what would obtained by applying t/2
iterations of power method to D−1/2!p(0)!

• Will converge to the top eigenvector of the normalized
adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D−1/2AD−1/2. The spectral gap.

15

t

-
a

Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

!p(t) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0).

D−1/2!p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2!p(0)).

• D−1/2!p(t) is exactly what would obtained by applying t/2
iterations of power method to D−1/2!p(0)!

• Will converge to the top eigenvector of the normalized
adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D−1/2AD−1/2. The spectral gap.

15

Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

!p(t) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

!p(0).

D−1/2!p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2!p(0)).

• D−1/2!p(t) is exactly what would obtained by applying t/2
iterations of power method to D−1/2!p(0)!

• Will converge to the top eigenvector of the normalized
adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D−1/2AD−1/2. The spectral gap. 15

Continuous Optimization and Gradient Descent

15

Discrete vs. Continuous Optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

• Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

• Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

• Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

• Unconstrained convex and non-convex optimization.

• Linear programming, quadratic programming, semidefinite
programming

16

Continuous Optimization Examples

17

H

