COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2024. Lecture 21

Logistics

- · Problem Set 4 due Monday.
- No class or office hours next week. No quiz due.
- Office hours tomorrow 10am-11am in CS 142.
- Practice final exams have been posted in Canvas. I will release a more complete study guide with additional practice questions som.

Summary

Last Class: Fast computation of the SVD/eigendecomposition.

- · Power method for approximating the top eigenvector of a matrix.
- · Start on analysis of convergence.

This Class (+ Rest of Semester):

is Class (+ Rest of Semester):

Finish up power method analysis.

Longethors to cardynaulks/

Markov thans

- · General iterative algorithms for optimization, specifically gradient descent and its variants.
- · What are these methods, when are they applied, and how do you analyze their performance?
- Small taste of what you can find in COMPSCI 651.

Power Method Wrap Up

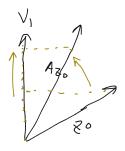
Power Method

Basic Power Method:

- Initialize: Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0,1)$.
- For $i = 1, \ldots, t$

$$\cdot \ \vec{z}^{(i)} := \mathbf{A} \cdot \vec{z}^{(i-1)}$$

- $\cdot \vec{z}_i := \frac{\vec{z}^{(i)}}{\|\vec{z}^{(i)}\|_2}.$
- Return \vec{z}_t .



$$\int_{\overline{Z}^{(0)}} \underline{z}^{(0)} = \underline{c_1} \vec{v}_1 + \underline{c_2} \vec{v}_2 + \ldots + \underline{c_d} \vec{v}_d \implies \overline{z}^{(t)} = \underline{c_1} \underline{\lambda}_1^t \vec{v}_1 + \underline{c_2} \underline{\lambda}_2^t \vec{v}_2 + \ldots + \underline{c_d} \underline{\lambda}_d^t \vec{v}_d$$
Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $[\lambda_2]^t \le \delta \cdot |\lambda_1|^t$ for $\delta > 0$?

$$\frac{1}{2^{(+)}} : \frac{1}{(-\gamma)^{+}} \frac{1}{\lambda_{1}} \frac{1}{\lambda_{2}} = \frac{1}{2^{(+)}} \frac{1}{\lambda_{1}} \frac{1}{\lambda_{2}} = \frac{1}{2^{(+)}} \frac{1}{\lambda_{1}} \frac{1}{\lambda_{2}} = \frac{1}{2^{(+)}} \frac{1}{\lambda_{2}} \frac{1}{\lambda_{2$$

 \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_1 . $\lambda_1, \lambda_2, \ldots \lambda_n$: eigenvalues of A, $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$: eigengap controlling convergence rate

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \frac{\lambda_1^t}{1} \vec{v}_1 + c_2 \frac{\lambda_2^t}{2} \vec{v}_2 + \ldots + c_d \frac{\lambda_d^t}{d} \vec{v}_d$$
Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $|\lambda_2|^t \le \delta \cdot |\lambda_1|^t$ for $\delta > 0$? $|\lambda_2|^t = (1 - \gamma)^t \cdot |\lambda_1|^t$

 \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_1 . $\lambda_1, \lambda_2, \ldots \lambda_n$: eigenvalues of **A**, $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$: eigengap controlling convergence rate

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$$
 Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $|\lambda_2|^t \le \delta \cdot |\lambda_1|^t$ for $\delta > 0$?

$$\lambda_{2}|^{t} = \underbrace{(1-\gamma)^{t} \cdot |\lambda_{1}|^{t}}_{1-\gamma)^{1/\gamma}} |\lambda_{1}|^{t} \cdot |\lambda_{1}|^{t}$$

 \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_1 . $\lambda_1, \lambda_2, \ldots \lambda_n$: eigenvalues of **A**, $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$: eigengap controlling convergence rate

5

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \frac{\lambda_1^t}{\lambda_1^t} \vec{v}_1 + c_2 \frac{\lambda_2^t}{\lambda_2^t} \vec{v}_2 + \ldots + c_d \frac{\lambda_d^t}{\lambda_d^t} \vec{v}_d$$
Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $|\lambda_2|^t \le \delta \cdot |\lambda_1|^t$ for $\delta > 0$?

$$|\lambda_2|^t = (1 - \gamma)^t \cdot |\lambda_1|^t$$

$$= (1 - \gamma)^{1/\gamma \cdot \gamma t} \cdot |\lambda_1|^t$$

$$\leq e^{-\gamma t} \cdot |\lambda_1|^t$$

 \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_1 . $\lambda_1, \lambda_2, \ldots \lambda_n$: eigenvalues of \mathbf{A} , $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$: eigengap controlling convergence rate

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \frac{\lambda_1^t}{1} \vec{v}_1 + c_2 \frac{\lambda_2^t}{2} \vec{v}_2 + \ldots + c_d \frac{\lambda_d^t}{d} \vec{v}_d$$
Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $|\lambda_2|^t < \delta \cdot |\lambda_1|^t$ for $\delta > 0$?

How many iterations
$$t$$
 does it take to have $|\lambda_2|^t \leq \delta \cdot |\lambda_1|^t$ for δ $|\lambda_2|^t = (1-\gamma)^t \cdot |\lambda_1|^t$ $= (1-\gamma)^{1/\gamma \cdot \gamma t} \cdot |\lambda_1|^t$ $\leq e^{-\gamma t} \cdot |\lambda_1|^t$ So it suffices to set $\gamma t = \ln(1/\delta)$. Or $t = \frac{\ln(1/\delta)}{\gamma}$. $\sim \frac{\ln(1/\delta)}{\ln(1-\gamma)}$

 \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_1 . $\lambda_1, \lambda_2, \dots \lambda_n$: eigenvalues of A, $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$: eigengap controlling convergence rate

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_d \lambda_d^t \vec{v}_d$$
Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $|\lambda_2|^t \le \delta \cdot |\lambda_1|^t$ for $\delta > 0$?

$$\begin{aligned} |\lambda_2|^t &= (1 - \gamma)^t \cdot |\lambda_1|^t \\ &= (1 - \gamma)^{1/\gamma \cdot \gamma t} \cdot |\lambda_1|^t \\ &\leq e^{-\gamma t} \cdot |\lambda_1|^t \end{aligned}$$

So it suffices to set $\gamma t = \ln(1/\delta)$. Or $t = \frac{\ln(1/\delta)}{\gamma}$. How small must we set δ to ensure that $c_1\lambda_1^t$ dominates all other components and so $\overline{Z}^{(t)}$ is very close to $\overline{V_1}$?

 \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_1 . $\lambda_1,\lambda_2,\ldots\lambda_n$: eigenvalues of \mathbf{A} , $\gamma=\frac{|\lambda_1|-|\lambda_2|}{|\lambda_1|}$: eigengap controlling convergence rate

Claim: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_d \vec{v}_d, \text{ with very high probability, for all } i:$ $N(\mathbf{v}_1|) \quad N(\mathbf{v}_1|) \quad O(1/d^2) \leq |c_i| \leq O(\log d) \qquad \text{if } c_i = 0$ $\text{Corollary:} \qquad \text{anti-constraints bowl} \qquad \text{constraints bowl}$ $\max_j \left| \frac{c_j}{c_1} \right| \leq O(d^2 \log d).$

$$\leq |c_i| \leq O(\log d)$$

$$\mathbb{F}_{c_i} = \mathbb{C}$$

$$\max_{j} \left| \frac{C_{j}}{C_{1}} \right| \leq O(d^{2} \log d).$$

 $\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$. $\vec{\mathbf{v}}_1$: top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_1 .

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left\lfloor \frac{c_j}{c_1} \right\rfloor \leq O(d^2 \log d)$.

Claim 2: For gap
$$\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$$
, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda_1^t}\right| \leq \delta$ for all i .

 $\mathbf{A} \in \mathbb{R}^{d \times d}$: input with eigenvalues $\lambda_1 \dots, \lambda_d$ and eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. $\vec{z}^{(i)}$: iterate at step i. c_1, \dots, c_d : coefficients of $\vec{z}^{(0)}$ in the eigenvector basis.

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \leq O(d^2 \log d)$.

Claim 2: For gap $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda_1^t}\right| \leq \delta$ for all i.

$$\vec{Z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2}$$

 $\mathbf{A} \in \mathbb{R}^{d \times d}$: input with eigenvalues $\lambda_1 \dots, \lambda_d$ and eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. $\vec{z}^{(i)}$: iterate at step i. c_1, \dots, c_d : coefficients of $\vec{z}^{(0)}$ in the eigenvector basis.

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_{j} \left| \frac{c_{j}}{c_{1}} \right| \leq O(d^{2} \log d).$

Claim 2: For gap $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_i^t}{\lambda_i^t}\right| \leq \delta$ for all i.

$$\vec{Z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \Longrightarrow \left\| \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d} \cdot \vec{V}_1 \right\|_2$$

$$\|\vec{Z}^{(t)} - \vec{V}_1\|_2 \le \left\| \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} \cdot \vec{W} \cdot \vec{V}_1 \right\|_2$$

 $A \in \mathbb{R}^{d \times d}$: input with eigenvalues $\lambda_1, \ldots, \lambda_d$ and eigenvectors $\vec{v}_1, \ldots, \vec{v}_d$. $\vec{z}^{(i)}$: iterate at step i. c_1, \ldots, c_d : coefficients of $\vec{z}^{(0)}$ in the eigenvector basis.

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \leq O(d^2 \log d)$.

Claim 2: For gap $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_i^t}{\lambda_1^t}\right| \leq \delta$ for all i.

$$\vec{Z}^{(t)} := \frac{c_1 \lambda_1^t \vec{V}_1 + \ldots + c_d \lambda_d^t \vec{V}_d}{\|c_1 \lambda_1^t \vec{V}_1 + \ldots + c_d \lambda_d^t \vec{V}_d\|_2} \Longrightarrow
\|\vec{Z}^{(t)} - \vec{V}_1\|_2 \le \left\| \frac{c_1 \lambda_1^t \vec{V}_1 + \ldots + c_d \lambda_d^t \vec{V}_d}{\|c_1 \lambda_1^t \vec{V}_1\|_2} - \vec{V}_1 \right\|_2
= \left\| \frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \vec{V}_2 + \ldots + \frac{c_d \lambda_d^t}{\lambda_1^t} \vec{V}_d \right\|_2$$

 $A \in \mathbb{R}^{d \times d}$: input with eigenvalues $\lambda_1 \dots, \lambda_d$ and eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. $\vec{z}^{(i)}$: iterate at step i. c_1, \dots, c_d : coefficients of $\vec{z}^{(0)}$ in the eigenvector basis.

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \leq O(d^2 \log d)$.

Claim 2: For gap $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda_1^t}\right| \leq \delta$ for all i.

$$\vec{Z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \Longrightarrow
\|\vec{Z}^{(t)} - \vec{v}_1\|_2 \le \left\| \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} - \vec{v}_1 \right\|_2
= \left\| \frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \vec{v}_2 + \ldots + \frac{c_d \lambda_d^t}{\lambda_1^t} \vec{v}_d \right\|_2 = \left\| \frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \right\| + \ldots + \left\| \frac{c_d \lambda_d^t}{\lambda_1^t} \right\|_2$$

 $A \in \mathbb{R}^{d \times d}$: input with eigenvalues $\lambda_1, \ldots, \lambda_d$ and eigenvectors $\vec{v}_1, \ldots, \vec{v}_d$. $\vec{z}^{(i)}$: iterate at step i, c_1, \ldots, c_d : coefficients of $\vec{z}^{(0)}$ in the eigenvector basis.

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \leq O(d^2 \log d)$.

Claim 2: For gap $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_i^t}{\lambda_1^t}\right| \leq \delta$ for all i.

$$\begin{split} \vec{Z}^{(t)} &:= \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \Longrightarrow \\ \|\vec{Z}^{(t)} - \vec{V}_1\|_2 &\leq \left\| \frac{c_1 \lambda_1^t \vec{V}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{V}_1\|_2} - \vec{V}_1 \right\|_2 \\ &= \left\| \frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \vec{v}_2 + \ldots + \frac{c_d \lambda_d^t}{c_1 \lambda_1^t} \vec{v}_d \right\|_2 \blacktriangleleft \underbrace{\left\{ \frac{c_2 \lambda_2^t}{c_1 \lambda_2^t} + \ldots + \left| \frac{c_d \lambda_d^t}{c_1 \lambda_1^t} \right| \leq \delta \cdot O(d^2 \log d) \cdot d.}_{O(c_1^2 | \mathbf{v}_1 \mathbf{v}_2^t)} + \ldots + \underbrace{\left| \frac{c_d \lambda_d^t}{c_1 \lambda_1^t} \right| \leq \delta \cdot O(d^2 \log d) \cdot d.}_{O(c_1^2 | \mathbf{v}_2 \mathbf{v}_2^t)} \end{split}$$

 $A \in \mathbb{R}^{d \times d}$: input with eigenvalues $\lambda_1, \ldots, \lambda_d$ and eigenvectors $\vec{v}_1, \ldots, \vec{v}_d$. $\vec{z}^{(i)}$: iterate at step i. c_1, \ldots, c_d : coefficients of $\vec{z}^{(0)}$ in the eigenvector basis.

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_{j} \left| \frac{c_{j}}{c_{1}} \right| \leq O(d^{2} \log d).$

Claim 2: For gap $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda^t}\right| \leq \delta$ for all i.

$$\vec{z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \implies$$

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \left\| \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} - \vec{v}_1 \right\|_2$$

$$= \left\| \frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \vec{v}_2 + \ldots + \frac{c_d \lambda_d^t}{\lambda_1^t} \vec{v}_d \right\|_2 = \left| \frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \right| + \ldots + \left| \frac{c_d \lambda_d^t}{\lambda_1^t} \right| \le \underline{\delta} \cdot O(d^2 \log d) \cdot d.$$
Setting $\delta = O\left(\frac{\epsilon}{d^3 \log d}\right)$ gives $\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \epsilon$.

 $\mathbf{A} \in \mathbb{R}^{d \times d}$: input with eigenvalues $\lambda_1 \dots, \lambda_d$ and eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. $\vec{z}^{(i)}$: iterate at step i. c_1, \ldots, c_d : coefficients of $\vec{z}^{(0)}$ in the eigenvector basis.

Power Method Theorem

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t = O\left(\frac{\ln(d/\epsilon)}{\gamma}\right)$ steps:

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \leq \epsilon.$$

Power Method Theorem

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t = O\left(\frac{\ln(d/\epsilon)}{\gamma}\right)$ steps:

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \epsilon.$$

Total runtime: O(t) matrix-vector multiplications. If $A = X^T X$:

$$O\left(\operatorname{nnz}(\mathsf{X})\cdot\frac{\ln(d/\epsilon)}{\gamma}\cdot\right) = O\left(\operatorname{nd}\cdot\frac{\ln(d/\epsilon)}{\gamma}\right).$$

$$O\left(\operatorname{nd}\cdot\frac{\ln(d/\epsilon)}{\gamma}\right).$$

Power Method Theorem

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{V}^{(0)}$ then, with high probability, after $t = O\left(\frac{\ln(d/\epsilon)}{\gamma}\right)$ steps:

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \leq \epsilon.$$

Total runtime: O(t) matrix-vector multiplications. If $A = X^TX$:

$$O\left(\mathsf{nnz}(\mathsf{X})\cdot \frac{\mathsf{ln}(d/\epsilon)}{\gamma}\cdot\right) = O\left(\underbrace{\mathsf{nd}}\cdot \frac{\mathsf{ln}(d/\epsilon)}{\gamma}\right).$$

How is γ dependence? $\sim 0^+$ areat

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t=O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \geq 2$.

9

Krylov subspace methods (Lanczos method, Arnoldi method.)

· How svds/eigs are actually implemented. Only need $t=O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \geq 2$.

- Power method: power up to λ_1^t and λ_i^t .

9

Krylov subspace methods (Lanczos method, Arnoldi method.)

· How svds/eigs are actually implemented. Only need $t=O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \geq 2$.

- Power method: power up to λ_1^t and λ_i^t . $\sim f(\lambda) = \chi^+$
- Krylov methods: apply a better degree t polynomial $T_t(\cdot)$ to the eigenvalues to separate $T_t(\lambda_1)$ from $T_t(\lambda_i)$.

Krylov subspace methods (Lanczos method, Arnoldi method.)

· How svds/eigs are actually implemented. Only need $t=O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \geq 2$.

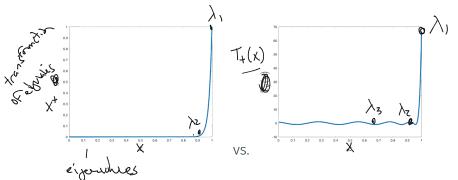
- Power method: power up to λ_1^t and λ_i^t .
- Krylov methods: apply a better degree t polynomial $T_t(\cdot)$ to the eigenvalues to separate $T_t(\lambda_1)$ from $T_t(\lambda_i)$
- Still requires just t matrix vector multiplies. Why?

$$C_1 \times + C_2 \times^2 + ... C_+ \times^{\dagger}$$

 $C_1 \times + C_2 \times^2 \vee_0 + ... C_+ \times^{\dagger} \vee_0$

9

krylov subspace methods



Optimal 'jump' polynomial in general is given by a degree *t* Chebyshev polynomial. Krylov methods find a polynomial tuned to the input matrix that does at least as well.

Generalizations to Larger k

- Block Power Method (a.k.a. Simultaneous Iteration, Subspace Iteration, or Orthogonal Iteration)
- Block Krylov methods

to accurately compute the top k singular vectors.

Generalizations to Larger k

- Block Power Method (a.k.a. Simultaneous Iteration, Subspace Iteration, or Orthogonal Iteration)
- Block Krylov methods

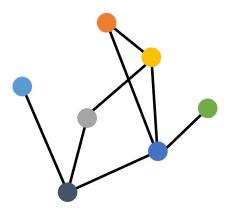
Runtime:
$$O\left(ndk \cdot \frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$$

to accurately compute the top *k* singular vectors.

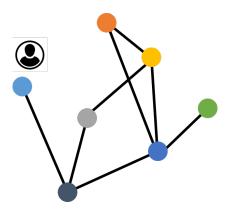
'Gapless' Runtime:
$$O\left(ndk \cdot \frac{\ln(d/\epsilon)}{\sqrt{\epsilon}}\right)$$

if you just want a set of vectors that gives an ϵ -optimal low-rank approximation when you project onto them.

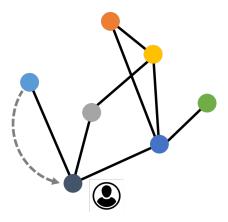
Connection Between Random Walks, Eigenvectors, and Power Method

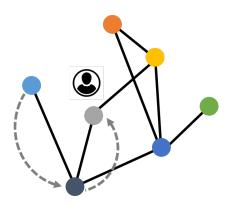


Consider a random walk on a graph G with adjacency matrix A.

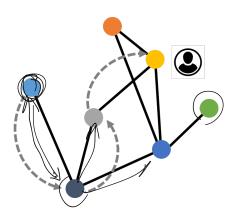


At each step, move to a <u>random vertex</u>, chosen uniformly at random from the neighbors of the <u>current vertex</u>.





$$\mathcal{P}^{(0)} =
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}$$



Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\underline{\vec{p}_i^{(t)}} = \Pr(\text{walk at node } i \text{ at step } t)$.

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

• Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$Pr(\text{walk \underline{at i at step t}}) = \sum_{j \in neigh(i)} Pr(\text{walk at j at step t-1}) \cdot \frac{1}{degree(j)}$$

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node i at step t})$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$\Pr(\text{walk at i at step t}) = \sum_{j \in neigh(i)} \Pr(\text{walk at j at step t-1}) \cdot \frac{1}{degree(j)}$$

$$= \vec{z}^T \vec{p}^{(t-1)}$$

$$\text{where } \vec{z}(j) = \frac{1}{degree(j)} \text{ for all } j \in neigh(i), \vec{z}(j) = 0 \text{ for all } j \notin neigh(i).$$

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

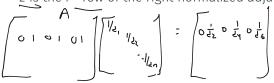
- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$Pr(\text{walk at i at step t}) = \sum_{j \in neigh(i)} Pr(\text{walk at j at step t-1}) \cdot \frac{1}{degree(j)}$$

$$= \vec{z}^T \vec{p}^{(t-1)}$$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

• \vec{z} is the i^{th} row of the right normalized adjacency matrix \underline{AD}^{-1} .



Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$Pr(\text{walk at i at step t}) = \sum_{j \in neigh(i)} Pr(\text{walk at j at step t-1}) \cdot \frac{1}{degree(j)}$$

$$= \vec{z}^T \vec{p}^{(t-1)}$$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

- \vec{z} is the i^{th} row of the right normalized adjacency matrix AD^{-1} .
- $\cdot \underline{\vec{p}^{(t)}} = \mathsf{A}\mathsf{D}^{-1}\vec{p}^{(t-1)}$

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node i at step t})$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$Pr(\text{walk at i at step t}) = \sum_{j \in neigh(i)} Pr(\text{walk at j at step t-1}) \cdot \frac{1}{degree(j)}$$

$$= \vec{z}^{T} \vec{p}^{(t-1)}$$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

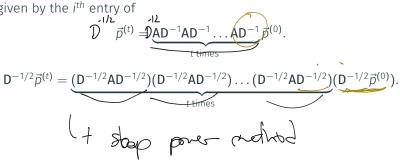
• \vec{z} is the i^{th} row of the right normalized adjacency matrix AD^{-1} .

•
$$\vec{p}^{(t)} = AD^{-1}\vec{p}^{(t-1)} = \underbrace{AD^{-1}AD^{-1}...AD^{-1}}_{t \text{ times}} \vec{p}^{(0)}$$

Claim: After t steps, the probability that a random walk is at node i is given by the ith entry of

$$\vec{p}^{(t)} = \underbrace{AD^{-1}AD^{-1}\dots AD^{-1}}_{t \text{ times}} \vec{p}^{(0)}.$$

Claim: After t steps, the probability that a random walk is at node i is given by the ith entry of



Claim: After *t* steps, the probability that a random walk is at node *i* is given by the *i*th entry of

$$\vec{p}^{(t)} = \underbrace{AD^{-1}AD^{-1} \dots AD^{-1}}_{t \text{ times}} \vec{p}^{(0)}.$$

$$D^{-1/2}\vec{p}^{(t)} = \underbrace{(D^{-1/2}AD^{-1/2})(D^{-1/2}AD^{-1/2}) \dots (D^{-1/2}AD^{-1/2})}_{t \text{ times}} (D^{-1/2}\vec{p}^{(0)}).$$

• $D^{-1/2}\vec{p}^{(t)}$ is exactly what would obtained by applying (1/2) iterations of power method to $D^{-1/2}\vec{p}^{(0)}$!

Claim: After *t* steps, the probability that a random walk is at node *i* is given by the *i*th entry of

$$\vec{p}^{(t)} = \underbrace{AD^{-1}AD^{-1} \dots AD^{-1}}_{t \text{ times}} \vec{p}^{(0)}.$$

$$D^{-1/2}\vec{p}^{(t)} = \underbrace{(D^{-1/2}AD^{-1/2})(D^{-1/2}AD^{-1/2}) \dots (D^{-1/2}AD^{-1/2})}_{t \text{ times}} (D^{-1/2}\vec{p}^{(0)}).$$

- $D^{-1/2}\vec{p}^{(t)}$ is exactly what would obtained by applying t/2 iterations of power method to $D^{-1/2}\vec{p}^{(0)}$!
- Will converge to the top eigenvector of the normalized adjacency matrix $D^{-1/2}AD^{-1/2}$. Stationary distribution.

Claim: After *t* steps, the probability that a random walk is at node *i* is given by the *i*th entry of

$$\vec{p}^{(t)} = \underbrace{AD^{-1}AD^{-1} \dots AD^{-1}}_{t \text{ times}} \vec{p}^{(0)}.$$

$$D^{-1/2}\vec{p}^{(t)} = \underbrace{(D^{-1/2}AD^{-1/2})(D^{-1/2}AD^{-1/2}) \dots (D^{-1/2}AD^{-1/2})}_{(D^{-1/2}\vec{p}^{(0)})}.$$

- $D^{-1/2}\vec{p}^{(t)}$ is exactly what would obtained by applying t/2 iterations of power method to $D^{-1/2}\vec{p}^{(0)}$!
- Will converge to the top eigenvector of the normalized adjacency matrix $D^{-1/2}AD^{-1/2}$. Stationary distribution.
- Like the power method, the time a random walk takes to converge to its stationary distribution (mixing time) is dependent on the gap between the top two eigenvalues of $D^{-1/2}AD^{-1/2}$. The spectral gap.

Continuous Optimization and Gradient Descent

Discrete vs. Continuous Optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

- Graph Problems: min-cut, max flow, shortest path, matchings, maximum independent set, traveling salesman problem
- Problems with discrete constraints or outputs: bin-packing, scheduling, sequence alignment, submodular maximization
- Generally searching over a finite but exponentially large set of possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

- · Unconstrained convex and non-convex optimization.
- Linear programming, quadratic programming, semidefinite programming

Continuous Optimization Examples

