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- Problem Set 4 due Monday.
- No class or office hours next week. No quiz due.

- Office hours tomorrow 10am-11am in CS 142.
—_— ’\f

- Practice final exams have been posted in Canvas. | will release a
more complete study guide with additional practice questions

SO .



Last Class: Fast computation of the SVD/eigendecomposition.

- Power method for approximating the top eigenvector of a
matrix.

- Start on analysis of convergence.
-

This Class (+ Rest of Semester): )q lov ~A\od s

- Finish up power method analysis. x[ﬂvvwﬂ\\ﬂ'-! Jﬁ /‘*VQVY’,“"‘)kS/
mvu\/‘Lo\/ Lheaarg

- General iterative algorithms for optimization, specifically
gradient descent and its variants.

- What are these methods, when are they applied, and how do
you analyze their performance?

- Small taste of what you can find in COMPSCI 657.
—=-



Power Method Wrap Up



Power Method

. dx 2
Basic Power Method: R e
- Initialize: Choose 29 randomly. E.g. Z(i) ~ N(0,1).
- Fori=1,...t -
- 720 = A Z0=1
70
%= o

- Return Z.




Power Method Convergence Rate
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V1: top eigenvector, being computed, Z1): iterate at step i, converging to V.
A1, A2, ... An: eigenvalues of A, v = W: eigengap controlling conver-
gence rate




Power Method Convergence Rate
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Power Method Convergence Rate

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — Z(t) = C1)\g\71 + Cz)\g\_/} + ...+ Cd)\b\_/'d
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Power Method Convergence Rate

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — Z(t) = C1)\g\71 + Cz)\g\_/} + ...+ Cd)\b\_/'d

Write [X;] = (1= )| x| for ‘gap’ 5 = Pl

How many iterations t does it take to have |A\|F < & - |\|f for § > 07
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So it suffices to set yt = In(1/4). Or t = In(1/9) ’
ST (R

V1: top eigenvector, being computed, Z1): iterate at step i, converging to V.
A1, A2, ... An: eigenvalues of A, v = W: eigengap controlling conver-
gence rate




Power Method Convergence Rate

+
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#H0) — CVi 4+ GV 4+ ...+ vy = A — C@1 + Cz@z +...+ Cd)\ZVd
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Write o] = (1= )| x| for ‘gap’ 5 = Puziel.

How many iterations t does it take to have |A\|F < & - |\|f for § > 07
ol = (1=)" M
( )1/7 7t |)\1|t
<e !
So it suffices to set yt = In(1/4). Or t = @

How small must we set § to ensure that c;\} dominates all other
components and so Z" is very close {0 ;7

V1: top eigenvector, being computed, Z1): iterate at step i, converging to V.
A1, A2, ... An: eigenvalues of A, v = W: eigengap controlling conver-
gence rate




Random Initialization

Claim: When z(9 is chosen with random Gaussian entries, writing
70 :/c1\71 + GV + ... + gy, With very high probability, for all i:
Nl N 0(1/d*) < |cj| < O(log d) Ta=90
7 o
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A € R9%9: input matrix with eigendecomposition A = VAV'. ¥;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to V.




Random Initialization

Claim 1: When z(® is chosen with random Gaussian entries, writing
70 = ¢V + oV + ... + C4Vy, With very high probability,

c 2
max; || < O0(d” log d).
. _ t .
Claim 2: For gap v = % andt= % % < ¢ forall i.
1
A € R9%d: input with eigenvalues X1..., Ay and eigenvectors ¥, ..., Vy. Z0):

iterate at step i. c1, . . ., cq: coefficients of 70 in the eigenvector basis. 7
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Claim 1: When z(® is chosen with random Gaussian entries, writing
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max; || < O0(d” log d).
. _ t .
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1
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Claim 1: When z(® is chosen with random Gaussian entries, writing
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Random Initialization

Claim 1: When z(®
720 = C1\_/'q + GV +.

is chosen with random Gaussian entries, writing
.+ CqVy, with very high probability,
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Power Method Theorem

Theorem (Basic Power Method Convergence)

Letv = W be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vecﬁJr/_V(O)then, with high probability, after t = O %) steps:

120 — Vi), <.



Power Method Theorem

Theorem (Basic Power Method Convergence)

Letv = W be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector V) then, with high probability, after t = O (%) steps:

||z(t) -V <e X_ré(:;>

Total runtime: O(t) matrix-vector multiplications. If & = X'X;

.
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Power Method Theorem

Theorem (Basic Power Method Convergence)

Letv = W be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector V) then, with high probability, after t = O ('”(i/s)) steps:

120 — Vi), <.

Total runtime: O(t) matrix-vector multiplications. If A = X'X:

(o B -0 H0)
How is e dependence? \/‘LrO C\)@é

How is v dependence? [\Olf %@63‘




Krylov Subspace Methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need
t=0 %) steps for the same guarantee.
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Krylov Subspace Methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need
t=0 (%) steps for the same guarantee.

Main Idea: Need to separate \; from \; for i > 2.

_},

- Power method: power up to Aj and AL 7 M"/’,X\

* Krylov methods: apply a better degree t polynomial T¢(-) to the
eigenvalues to separate Ti(\r) from Ti(\)).



Krylov Subspace Methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need
t=0 (%) steps for the same guarantee.

Main Idea: Need to separate \; from \; for i > 2.

- Power method: power up to X! and AL

- Krylov methods: apply a better degree t polynomial T¢(+) to the
eigenvalues to separate Ti(A\r) from Ti(\;

- Still requires just t or multiplies. Why?

A
Xt G X T X
L +
G AVU+C)_HV°+"‘ C+‘qva



krylov subspace methods
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Optimal ‘jump’ polynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.



Generalizations to Larger k

- Block Power Method (a.k.a. Simultaneous Iteration, Subspace
Iteration, or Orthogonal Iteration)

- Block Krylov methods

. . In(d/e)
Runtime: O @ @)

to accurately compute the top k singular vectors.

1



Generalizations to Larger k

- Block Power Method (a.k.a. Simultaneous Iterat|on Subspace
Iteration, or Orthogonal Iteration) H% - :LL o(_% (,q?)

- Block Krylov methods L~

N In(d/
Runtime: O (ndfe \f/)

to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O (nclie- %)

if you just want a set of vectors that gives an e-optimal low-rank
approximation when you project onto them.

-
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Connection Between Random Walks,
Eigenvectors, and Power Method

12



Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.




Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

®

At each step, move to a random vertex, chosen uniformly at random
. \_—
from the neighbors of the current vertex.
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Consider a random walk on a graph G with adjacency matrix A.
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Consider a random walk on a graph G with adjacency matrix A.
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Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.
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Connection to Random Walks

Let B € R" have i entry 5 = Pr(walk at node i at step t).
— - —_— T
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Connection to Random Walks

Let (O € R" have ith entry 5,0) = Pr(walk at node i at step t).

- Initialize: 5 =1,0,0,...,0].
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Connection to Random Walks

Let B € R" have i entry 5 = Pr(walk at node i at step t).

- Initialize: 5 =1,0,0,...,0].

- Update:
.
Pr(walk at i at step t) Z Pr(walk at j at step t-1) - Wee(})
jeneigh(i)
_—«ﬂ ).

14



Connection to Random Walks

Let B € R" have i entry 5 = Pr(walk at node i at step t).

- Initialize: 5 =1,0,0,...,0].

- Update:
.
(walk atiatstept) Z Pr(walk at j at step t-1) - degree())
' jeneigh(i)
[V =
Lacens]  _zpe
\ -
where Z(j) = degree(/ for all j € neigh(i), Z(j) = 0 for all

j ¢ neigh(i).
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Connection to Random Walks

Let B € R" have i entry 5 = Pr(walk at node i at step t).

- Initialize: 5 =1,0,0,...,0].

- Update:
.
Pr(walk at i at step t) Z Pr(walk at j at step t-1) - degree())
jeneigh(i)
_ ZTﬁ(t—1

where Z(j) = degree(/ for all j € neigh(i), Z(j) = 0 for all

j & neigh(i).
- 7 |s the ith | row of the right normalized adjacency matrix AD~".

—_—

i ,‘ ot
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Connection to Random Walks

Let B € R" have i entry 5 = Pr(walk at node i at step t).

- Initialize: 5 =1,0,0,...,0].

- Update:
.
Lk P k 1)
Pr(walk ati at step t) = Z r(walk at j at step t-1) - degree()
jeneigh(i)
_ ZTﬁ(t—1

where Z(j) = degree(/ for all j € neigh(i), Z(j) = 0 for all

j ¢ neigh(i).
- Zis the i row of the right normalized adjacency matrix AD~".
. 5O — AD—15(t=")

p AD™'p

L
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Connection to Random Walks

Let B € R" have i entry 5 = Pr(walk at node i at step t).

- Initialize: 5 =1,0,0,...,0].

- Update:
.
Lk P k 1)
Pr(walk ati at step t) = Z r(walk at j at step t-1) - degree()
jeneigh(i)
_ ZTﬁ(t—1

where Z(j) = degree(/ for all j € neigh(i), Z(j) = 0 for all

j ¢ neigh(i).
- Zis the i row of the right normalized adjacency matrix AD~".

- p = AD-'5(t=) = AD~'AD~"'...AD"' 5(®

t times
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Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the i" entry of

—

p® =AD" 'AD"...AD™' 5(0),

t times

15



Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

’D pt):DAD”AD” (}

D71/25(t) _ (Df'l/ZADf‘\/Z)(DfW/2AD71/2) L (Df‘\/2AD71/2)(D71/25(0)).
2 — =
~ s \/
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Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the i" entry of

—

p® =AD" 'AD"...AD™' 5(0),

t times

D71/25(t) _ (Df'l/ZADf‘\/Z)(DfW/2AD71/2) L (Df‘\/2AD71/2)(D71/25(0)).

-+

- D-1/25® is exactly what would obtained by applying €2
“Tterations of power method to D~/25()1

ttimes
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Claim: After t steps, the probability that a random walk is at node i is
given by the i" entry of

—

p® =AD" 'AD"...AD™' 5(0),

t times
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- D725 is exactly what would obtained by applying t/2
iterations of power method to D~'/2p(0)1

- Will converge to the top eigenvector of the normalized
adjacency matrix D~"/2AD~"/2, Stationary distribution.

15



Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the i" entry of

—

p® =AD" 'AD"...AD™' 5(0),

t times

D71/25(t) _ (Df'l/ZADf‘\/Z)(DfW/2AD71/2) L (Df‘\/2AD71/2)(D71/25(0)).

ttimes

- D725 is exactly what would obtained by applying t/2
iterations of power method to D~'/2p(0)1

- Will converge to the top eigenvector of the normalized
adjacency matrix D~"/2AD~"/2, Stationary distribution.

- Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D~'/2AD~"/2. The spectral gap. 15



Continuous Optimization and Gradient Descent



Discrete vs. Continuous Optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
- Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

- Unconstrained convex and non-convex optimization.

- Linear programming, quadratic programming, semidefinite
programming

16



Continuous Optimization Examples

N
£6) f(6)

AN OER = 6 € R

0 € R?




