COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.
Lecture 20

- Problem Set 4 is due 11/25.
- See Piazza for some updates/clarifications on Problem 1.
- No class or quiz next week.

- Additional office hours Friday 10am.

Last Few Classes: Spectral Graph Partitioning
- Focus on separating graphs with small but relatively balanced
cuts.
- Connection to second smallest eigenvector of graph Laplacian.
- Provable guarantees for stochastic block model.

- Expectation analysis in class. Quick sketch of full analysis.
This Class: Computing the SVD/eigendecomposition.

- Efficient algorithms for SVD/eigendecomposition.
- Iterative methods: power method, Krylov subspace methods.

- High level: a glimpse into fast methods for linear algebraic
computation, which are workhorses behind data science.

Quiz Review

Multiple Choice 1 point

Consider X € R™ . Let Uy € R™* and Vi € R¥¥ containits top k left and right singular vectors respectively.

When do we have Uy, UkTX =XV, VkT?
WhenUy, = V.

O Always
Never
When X is symmetric.

When X is symmetric with non-negative eigenvalues.

Quiz Review

Multiple Choice 1 point

Under what conditions is the SVD of X equal to the eigendecomposition of X?

Xis symmetric.
X has integer entries.
X is symmetric and has non-negative eigenvalues.

Xis square and has non-negative entries.

Quiz Review

- Multiple Answer 1 point

Which of the follow properties of the graph Laplacian for an undirected, unweighted graph always hold? Select all that apply.
It is symmetric.

(3 Allifits entries are non-negative.
For any vector v, oI L >0.
All'if its eigenvalues are non-negative.

It has at most two entries per row and column.

Efficient Eigendecomposition and SVD

We have talked about the eigendecomposition and SVD as ways to
compress data, to embed entities like words and documents, to
compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on large
datasets?

Computing the SVD

Basic Algorithm: To compute the SVD of full-rank X € R"*¢,
X=UxV":
- Compute XX - O(nd?) runtime.
- Find eigendecomposition X'X = VAV’ - O(d?) runtime.
- Compute L = XV - O(nd?) runtime. Note that L = UX.
- Set o; = ||Lj|l, and U; = L;/||Lj|l2- = O(nd) runtime.
Total runtime: O(nd? + d®) = O(nd?) (assume w.Lo.g. n > d)

- If we have n =10 million images with 200 x 200 x 3 = 120,000
pixel values each, runtime is 1.5 x 10" operations!

- The worlds fastest super computers compute at ~ 100
petaFLOPS = 10" FLOPS (floating point operations per second).

- This is a relatively easy task for them - but no one else.

Faster Algorithms

To speed up SVD computation we will take advantage of the fact that
we typically only care about computing the top (or bottom) k
singular vectors of a matrix X € R"*¢ for k < d.

- Suffices to compute V, € R9** and then compute U, X, = XV,.

- Use an iterative algorithm to compute an approximation to the
top k singular vectors V, (the top k eigenvectors of X'X.)

- Runtime will be roughly O(ndk) instead of O(nd?).

Sparse (iterative) vs. Direct Method. svd vs. svds.

Power Method

Power Method: The most fundamental iterative method for
approximate SVD/eigendecomposition. Applies to computing k =1
eigenvectors, but can be generalized to larger k.

Goal: Given symmetric A € R4 with eigendecomposition A = VAV,
find Z~ ;. l.e, the top eigenvector of A.

- Initialize: Choose 79 randomly. E.g. Z9(i) ~ N(0,1).

- Fori=1,...,t
- Z0 = A 20D
-
R FON P
- Return Z;

10

Power Method

+ unit circle +unit «

n

Power Method Analysis

Power method:

- Initialize: Choose Z(%) randomly. E.g. Z® (i) ~ N(0,1).
- Fori=1,...,t

<70 = a0
)
Zi = T,
- Return Z.

Theoretically equivalent to:

- Fori=1,...,t

N Oy N)
Lz)
Zi = T,
Return Z;

12

Power Method Analysis

Write 29 in A’s eigenvector basis:

70 = Vi +CVy + ...+ Cd\7d-

Update step: Z) = A - ZU=") = VAV’ . =" (then normalize)
VA9 =
A7) =

Z0 = vAvT . 70 =

A € RI%9: input matrix with eigendecomposition A = VAV’. ¥: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to .

13

Power Method Analysis

Claim 1: \/\/riting 70) = C1\71 + C2\72 + ...+ Cdde

7 = ')\W\71+C2'/\2\72+~~+Cd'/\d\7d~
7@ = A7) = vAVTZ0) =

Claim 2:

z(t):C1-/\%\71+C2-)\é\72+...+Cd'/\é/\7d.

—

A € RY%d: input matrix with eigendecomposition A = VAV’. ¥;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to .

14

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.

Z(O) = C1\71 + C2V2 + ...+ Cdvd - f(t) = C1/\%\71 + Cz)\g\72 + ...+ Cd)\Ede

04 T T T T T Ilerat‘lono T

Iteration 1

08

When will convergence be slow?

Power Method Slow Convergence

Slow Case: A has eigenvalues: Ay = 1,1, =.99, A3 = .9,\, = .8,...

70 = OV + GV + ...+ Cd\7d = 70 = C1/\%\7‘\ + C2/\5\72 + ...+ Cd)\évd

Iteration 0

Iteration 1

07

Power Method Convergence Rate

2(0) = C1\71 + C2\72 + ...+ Cd\7d — 2(t) = C1/\%\71 + CQ/\E\?Z + ...+ Cd/\ng

Write [Az = (1—7)[M| for ‘gap’ v = W

How many iterations t does it take to have |A\;|' < 6 - |\ | for 6 > 07
Mol = (1=)" (A
(SORARIR PV
<e |)\1|t
So it suffices to set yt = In(1/§). Ort = @
How small must we set ¢ to ensure that ¢;\! dominates all other
components and so 2 is very close to v;?

V1: top eigenvector, being computed, Z1): iterate at step i, converging to .
A1, A2, ... Ap: eigenvalues of A, v = J%\l’\—zl: eigengap controlling conver-
gence rate

