
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 20

1

Logistics

• Problem Set 4 is due 11/25.

• See Piazza for some updates/clarifications on Problem 1.

• No class or quiz next week.

• Additional office hours Friday 10am.

2

Summary

Last Few Classes: Spectral Graph Partitioning

• Focus on separating graphs with small but relatively balanced
cuts.

• Connection to second smallest eigenvector of graph Laplacian.

• Provable guarantees for stochastic block model.

• Expectation analysis in class. Quick sketch of full analysis.

This Class: Computing the SVD/eigendecomposition.

• Efficient algorithms for SVD/eigendecomposition.

• Iterative methods: power method, Krylov subspace methods.

• High level: a glimpse into fast methods for linear algebraic
computation, which are workhorses behind data science.

3

Quiz Review

4

Quiz Review

5

Quiz Review

6

Efficient Eigendecomposition and SVD

We have talked about the eigendecomposition and SVD as ways to
compress data, to embed entities like words and documents, to
compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on large
datasets?

7

Computing the SVD

Basic Algorithm: To compute the SVD of full-rank X ∈ Rn×d,
X = UΣVT:

• Compute XTX – O(nd2) runtime.

• Find eigendecomposition XTX = VΛVT – O(d3) runtime.

• Compute L = XV – O(nd2) runtime. Note that L = UΣ.

• Set σi = ∥Li∥2 and Ui = Li/∥Li∥2. – O(nd) runtime.
Total runtime: O(nd2 + d3) = O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100
petaFLOPS = 1017 FLOPS (floating point operations per second).

• This is a relatively easy task for them – but no one else.

8

Faster Algorithms

To speed up SVD computation we will take advantage of the fact that
we typically only care about computing the top (or bottom) k
singular vectors of a matrix X ∈ Rn×d for k ≪ d.

• Suffices to compute Vk ∈ Rd×k and then compute UkΣk = XVk.

• Use an iterative algorithm to compute an approximation to the
top k singular vectors Vk (the top k eigenvectors of XTX.)

• Runtime will be roughly O(ndk) instead of O(nd2).

Sparse (iterative) vs. Direct Method. svd vs. svds.

9

Power Method

Power Method: The most fundamental iterative method for
approximate SVD/eigendecomposition. Applies to computing k = 1
eigenvectors, but can be generalized to larger k.

Goal: Given symmetric A ∈ Rd×d, with eigendecomposition A = VΛVT,
find z⃗ ≈ v⃗1. I.e., the top eigenvector of A.

• Initialize: Choose z⃗(0) randomly. E.g. z⃗(0)(i) ∼ N (0, 1).

• For i = 1, . . . , t

• z⃗(i) := A · z⃗(i−1)

• z⃗i := z⃗(i)
∥⃗z(i)∥2

• Return z⃗t

10

Power Method

11

Power Method Analysis

Power method:

• Initialize: Choose z⃗(0) randomly. E.g. z⃗(0)(i) ∼ N (0, 1).

• For i = 1, . . . , t
• z⃗(i) := A · z⃗(i−1)

• z⃗i := z⃗(i)
∥⃗z(i)∥2

• Return z⃗t.

Theoretically equivalent to:

• For i = 1, . . . , t
• z⃗(i) := A · z⃗(i−1)

• z⃗i := z⃗(i)
∥⃗z(i)∥2

.

• Return z⃗t.

12

Power Method Analysis

Write z⃗(0) in A’s eigenvector basis:

z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d.

Update step: z⃗(i) = A · z⃗(i−1) = VΛVT · z⃗(i−1) (then normalize)

VT⃗z(0) =

ΛVT⃗z(0) =

z⃗(1) = VΛVT · z⃗(0) =

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . v⃗1 : top eigenvec-
tor, being computed, z⃗(i) : iterate at step i, converging to v⃗1 .

13

Power Method Analysis

Claim 1 : Writing z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d,

z⃗(1) = c1 · λ1v⃗1 + c2 · λ2v⃗2 + . . .+ cd · λdv⃗d.

z⃗(2) = A⃗z(1) = VΛVT⃗z(1) =

Claim 2:

z⃗(t) = c1 · λt
1v⃗1 + c2 · λt

2v⃗2 + . . .+ cd · λt
dv⃗d.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . v⃗1 : top eigenvec-
tor, being computed, z⃗(i) : iterate at step i, converging to v⃗1 .

14

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d =⇒ z⃗(t) = c1λt
1v⃗1 + c2λt

2v⃗2 + . . .+ cdλt
dv⃗d

Iteration 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Iteration 1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Iteration 2

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 6

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 7

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 8

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration 9

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration 10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?
15

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d =⇒ z⃗(t) = c1λt
1v⃗1 + c2λt

2v⃗2 + . . .+ cdλt
dv⃗d

Iteration 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Iteration 1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Iteration 2

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 6

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 7

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 8

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 9

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 11

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 12

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 13

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16

Power Method Convergence Rate

z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d =⇒ z⃗(t) = c1λt
1v⃗1 + c2λt

2v⃗2 + . . .+ cdλt
dv⃗d

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(1/δ). Or t = ln(1/δ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so z⃗(t) is very close to v⃗1?

v⃗1 : top eigenvector, being computed, z⃗(i) : iterate at step i, converging to v⃗1 .
λ1, λ2, . . . λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

17

