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Logistics

• Problem Set 4 is due 11/25.

• See Piazza for some updates/clarifications on Problem 1.

• No class or quiz next week.

• Additional office hours Friday 10am.
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Summary

Last Few Classes: Spectral Graph Partitioning

• Focus on separating graphs with small but relatively balanced
cuts.

• Connection to second smallest eigenvector of graph Laplacian.

• Provable guarantees for stochastic block model.

• Expectation analysis in class. Quick sketch of full analysis.

This Class: Computing the SVD/eigendecomposition.

• Efficient algorithms for SVD/eigendecomposition.

• Iterative methods: power method, Krylov subspace methods.

• High level: a glimpse into fast methods for linear algebraic
computation, which are workhorses behind data science.
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Quiz Review
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Efficient Eigendecomposition and SVD

We have talked about the eigendecomposition and SVD as ways to
compress data, to embed entities like words and documents, to
compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on large
datasets?
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Computing the SVD

Basic Algorithm: To compute the SVD of full-rank X ∈ Rn×d,
X = UΣVT:

• Compute XTX – O(nd2) runtime.

• Find eigendecomposition XTX = VΛVT – O(d3) runtime.

• Compute L = XV – O(nd2) runtime. Note that L = UΣ.

• Set σi = ‖Li‖2 and Ui = Li/‖Li‖2. – O(nd) runtime.

Total runtime: O(nd2 + d3) = O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100
petaFLOPS = 1017 FLOPS (floating point operations per second).

• This is a relatively easy task for them – but no one else.
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Faster Algorithms

To speed up SVD computation we will take advantage of the fact that
we typically only care about computing the top (or bottom) k
singular vectors of a matrix X ∈ Rn×d for k & d.

• Suffices to compute Vk ∈ Rd×k and then compute UkΣk = XVk.

• Use an iterative algorithm to compute an approximation to the
top k singular vectors Vk (the top k eigenvectors of XTX.)

• Runtime will be roughly O(ndk) instead of O(nd2).

Sparse (iterative) vs. Direct Method. svd vs. svds.
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Power Method

Power Method: The most fundamental iterative method for
approximate SVD/eigendecomposition. Applies to computing k = 1
eigenvectors, but can be generalized to larger k.

Goal: Given symmetric A ∈ Rd×d, with eigendecomposition A = VΛVT,
find "z ≈ "v1. I.e., the top eigenvector of A.

• Initialize: Choose "z(0) randomly. E.g. "z(0)(i) ∼ N (0, 1).

• For i = 1, . . . , t

• "z(i) := A ·"z(i−1)

• "zi := !z(i)
‖!z(i)‖2

• Return "zt
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Power Method
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Power Method Analysis

Power method:

• Initialize: Choose "z(0) randomly. E.g. "z(0)(i) ∼ N (0, 1).

• For i = 1, . . . , t
• "z(i) := A ·"z(i−1)

• "zi := !z(i)
‖!z(i)‖2

• Return "zt.

Theoretically equivalent to:

• For i = 1, . . . , t
• "z(i) := A ·"z(i−1)

• "zi := !z(i)
‖!z(i)‖2

.

• Return "zt.

12



Power Method Analysis

Power method:

• Initialize: Choose "z(0) randomly. E.g. "z(0)(i) ∼ N (0, 1).

• For i = 1, . . . , t
• "z(i) := A ·"z(i−1)

• "zi := !z(i)
‖!z(i)‖2

• Return "zt.

Theoretically equivalent to:

• For i = 1, . . . , t
• "z(i) := A ·"z(i−1)

• "zi := !z(i)
‖!z(i)‖2

.

• Return "zt.

12

} i n
practice don't do

t r i , d e to routoff/
overflow
error.



Power Method Analysis

Write "z(0) in A’s eigenvector basis:

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd.

Update step: "z(i) = A ·"z(i−1) = VΛVT ·"z(i−1) (then normalize)

VT"z(0) =

ΛVT"z(0) =

"z(1) = VΛVT ·"z(0) =

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . !v1: top eigenvec-
tor, being computed,!z(i) : iterate at step i, converging to !v1.
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Power Method Analysis

Claim 1 : Writing "z(0) = c1"v1 + c2"v2 + . . .+ cd"vd,

"z(1) = c1 · λ1"v1 + c2 · λ2"v2 + . . .+ cd · λd"vd.

"z(2) = A"z(1) = VΛVT"z(1) =

Claim 2:

"z(t) = c1 · λt
1"v1 + c2 · λt

2"v2 + . . .+ cd · λt
d"vd.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . !v1: top eigenvec-
tor, being computed,!z(i) : iterate at step i, converging to !v1.
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Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

When will convergence be slow?
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Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd
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"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd
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Power Method Convergence Rate

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?

|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(1/δ). Or t = ln(1/δ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so "z(t) is very close to "v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate
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