
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 2

1

Reminder

Reminders:

• Remember to sign up for Piazza.
• Find homework teammates (see Piazza Post) and sign up
for Gradescope (code on course website).

• Week 1 Quiz will be available after class and is due
Monday at 8:00pm.

• Let me know if you see any issues with the quiz. This is my
first time giving a quiz over Canvas.

2

[- -

Overview

Last Class:

• Basic probability review. See course site for links to resources to
refresh your probability background.

• Start on linearity of expectation and variance.

Today:

• Proofs for linearity of expectation and variance.

• Algorithmic applications.

• Introduce Markov’s inequality a fundamental concentration
bound that let us prove that a random variable lies close to its
expectation with good probability.

• Learn about random hash functions, which are a key tool in
randomized methods for data processing. Probabilistic analysis
via linearity of expectation.

3

Overview

Last Class:

• Basic probability review. See course site for links to resources to
refresh your probability background.

• Start on linearity of expectation and variance.

Today:

• Proofs for linearity of expectation and variance.

• Algorithmic applications.

• Introduce Markov’s inequality a fundamental concentration
bound that let us prove that a random variable lies close to its
expectation with good probability.

• Learn about random hash functions, which are a key tool in
randomized methods for data processing. Probabilistic analysis
via linearity of expectation.

3

[

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y.

Proof:

E[X+ Y] =
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · (s+ t)

=
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · s+

∑

t∈T

∑

s∈S
Pr(X = s ∩ Y = t) · t

=
∑

s∈S
Pr(X = s) · s+

∑

t∈T
Pr(Y = t) · t

(law of total probability)

= E[X] + E[Y].

4

- -

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y.

Proof:

E[X+ Y] =
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · (s+ t)

=
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · s+

∑

t∈T

∑

s∈S
Pr(X = s ∩ Y = t) · t

=
∑

s∈S
Pr(X = s) · s+

∑

t∈T
Pr(Y = t) · t

(law of total probability)

= E[X] + E[Y].

4

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y.

Proof:

E[X+ Y] =
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · (s+ t)

=
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · s+

∑

t∈T

∑

s∈S
Pr(X = s ∩ Y = t) · t

=
∑

s∈S
Pr(X = s) · s+

∑

t∈T
Pr(Y = t) · t

(law of total probability)

= E[X] + E[Y].

4

s : I , t : b

- f ' t{i,.-63,{lib} I
3 6

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y.

Proof:

E[X+ Y] =
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · (s+ t)

=
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · s+

∑

t∈T

∑

s∈S
Pr(X = s ∩ Y = t) · t

=
∑

s∈S
Pr(X = s) · s+

∑

t∈T
Pr(Y = t) · t

(law of total probability)

= E[X] + E[Y].

4

~ . -
x Y 'Pr(Ks) Prly:D
(l , D '136

4,2) list
: +:
(l , 6) '136

"116

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y.

Proof:

E[X+ Y] =
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · (s+ t)

=
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · s+

∑

t∈T

∑

s∈S
Pr(X = s ∩ Y = t) · t

=
∑

s∈S
Pr(X = s) · s+

∑

t∈T
Pr(Y = t) · t

(law of total probability)

= E[X] + E[Y].

4

- -
LEA] FIND

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y.

Proof:

E[X+ Y] =
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · (s+ t)

=
∑

s∈S

∑

t∈T
Pr(X = s ∩ Y = t) · s+

∑

t∈T

∑

s∈S
Pr(X = s ∩ Y = t) · t

=
∑

s∈S
Pr(X = s) · s+

∑

t∈T
Pr(Y = t) · t

(law of total probability)

= E[X] + E[Y].

4

-

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y]

when X and Y are uncorrelated, and in
particular, when they are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are uncorrelated)
when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

5

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are uncorrelated, and in
particular, when they are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are uncorrelated)
when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

5

i nsprint⇒ uncorrelated

⇒ hemikgo f
w i n c e

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are uncorrelated, and in
particular, when they are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are uncorrelated)
when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

5

Vara]= E l¥#IT

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are uncorrelated, and in
particular, when they are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are uncorrelated)
when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

5

§¥,"K:S n Yst).s i t

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are uncorrelated, and in
particular, when they are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are uncorrelated)
when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

5

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are uncorrelated, and in
particular, when they are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are uncorrelated)
when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

5

- -

tI(x2t2×y+y2g
-CHINTEND2

EMT#Exist#IT -$632-NEXITY-#Y'

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are uncorrelated, and in
particular, when they are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are uncorrelated)
when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

5

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are uncorrelated, and in
particular, when they are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are uncorrelated)
when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

5

€i÷¥⇒
- O - O
¥ , ¥ ⇒

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are uncorrelated, and in
particular, when they are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are uncorrelated)
when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

5

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are uncorrelated, and in
particular, when they are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are uncorrelated)
when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

5

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are uncorrelated, and in
particular, when they are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are uncorrelated)
when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

5

An Algorithmic Application

You have contracted with a new company to provide CAPTCHAS for
your website.

• They claim that they have a database of 1, 000, 000 unique
CAPTCHAS. A random one is chosen for each security check.

• You want to independently verify this claimed database size.

• You could make test checks until you see 1, 000, 000 unique
CAPTCHAS: would take ≥ 1, 000, 000 checks!

6

An Algorithmic Application

You have contracted with a new company to provide CAPTCHAS for
your website.

• They claim that they have a database of 1, 000, 000 unique
CAPTCHAS. A random one is chosen for each security check.

• You want to independently verify this claimed database size.

• You could make test checks until you see 1, 000, 000 unique
CAPTCHAS: would take ≥ 1, 000, 000 checks!

6

An Algorithmic Application

You have contracted with a new company to provide CAPTCHAS for
your website.

• They claim that they have a database of 1, 000, 000 unique
CAPTCHAS. A random one is chosen for each security check.

• You want to independently verify this claimed database size.

• You could make test checks until you see 1, 000, 000 unique
CAPTCHAS: would take ≥ 1, 000, 000 checks!

6

An Algorithmic Application

An Idea: You run some test security checks and see if any duplicate
CAPTCHAS show up. If you’re seeing duplicates after not too many
checks, the database size is probably not too big.

‘Mark and recapture’
method in ecology.

Think-Pair-Share: If you run m security checks, and there are n
unique CAPTCHAS, how many pairwise duplicates do you see in

expectation?

If e.g. the same CAPTCHA shows up three times, on your ith, jth, and
kth test, this is three duplicates: (i, j), (i, k) and (j, k).

7

An Algorithmic Application

An Idea: You run some test security checks and see if any duplicate
CAPTCHAS show up. If you’re seeing duplicates after not too many
checks, the database size is probably not too big.

‘Mark and recapture’
method in ecology.

Think-Pair-Share: If you run m security checks, and there are n
unique CAPTCHAS, how many pairwise duplicates do you see in

expectation?

If e.g. the same CAPTCHA shows up three times, on your ith, jth, and
kth test, this is three duplicates: (i, j), (i, k) and (j, k).

7

An Algorithmic Application

An Idea: You run some test security checks and see if any duplicate
CAPTCHAS show up. If you’re seeing duplicates after not too many
checks, the database size is probably not too big.

‘Mark and recapture’
method in ecology.

Think-Pair-Share: If you run m security checks, and there are n
unique CAPTCHAS, how many pairwise duplicates do you see in

expectation?

If e.g. the same CAPTCHA shows up three times, on your ith, jth, and
kth test, this is three duplicates: (i, j), (i, k) and (j, k). 7

Y o n
i¥÷÷@

=
- -

Linearity of Expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0
otherwise. An indicator random variable.

Note that the Di,j random variables are not independent!

n: number of CAPTCHAS in database,m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates inm random CAPTCHAS

8

:

Linearity of Expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0
otherwise. An indicator random variable.

Note that the Di,j random variables are not independent!

n: number of CAPTCHAS in database,m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates inm random CAPTCHAS

8

n i .Y

Dy,z:L

Linearity of Expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0
otherwise. An indicator random variable. The number of
pairwise duplicates (a random variable) is:

D =
∑

i,j∈[m],i<j

Di,j.

For any pair i, j ∈ [m], i < j: E[Di,j] = Pr[Di,j = 1]

= 1
n .

E[D] =
∑

i,j∈[m],i<j

1
n
=

(m
2
)

n
=

m(m− 1)
2n

.

Note that the Di,j random variables are not independent!

n: number of CAPTCHAS in database,m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates inm random CAPTCHAS

8

-

Linearity of Expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0
otherwise. An indicator random variable. The number of
pairwise duplicates (a random variable) is:

E[D] =
∑

i,j∈[m],i<j

E[Di,j].

For any pair i, j ∈ [m], i < j: E[Di,j] = Pr[Di,j = 1]

= 1
n .

E[D] =
∑

i,j∈[m],i<j

1
n
=

(m
2
)

n
=

m(m− 1)
2n

.

Note that the Di,j random variables are not independent!

n: number of CAPTCHAS in database,m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates inm random CAPTCHAS

8

÷

5
Di;= I n.pt
Di,:O u p l ' t

Linearity of Expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0
otherwise. An indicator random variable. The number of
pairwise duplicates (a random variable) is:

E[D] =
∑

i,j∈[m],i<j

E[Di,j].

For any pair i, j ∈ [m], i < j: E[Di,j] = Pr[Di,j = 1] = 1
n .

E[D] =
∑

i,j∈[m],i<j

1
n
=

(m
2
)

n
=

m(m− 1)
2n

.

Note that the Di,j random variables are not independent!

n: number of CAPTCHAS in database,m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates inm random CAPTCHAS

8

I,.....,n

PIG. = Cj)
: fastPki:c;) = §,P r(Ci:c;= k) m

-
PK i skn Cjsk)
P h i s h) .Pcc,sk)stints},

Linearity of Expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0
otherwise. An indicator random variable. The number of
pairwise duplicates (a random variable) is:

E[D] =
∑

i,j∈[m],i<j

E[Di,j].

For any pair i, j ∈ [m], i < j: E[Di,j] = Pr[Di,j = 1] = 1
n .

E[D] =
∑

i,j∈[m],i<j

1
n
=

(m
2
)

n
=

m(m− 1)
2n

.

Note that the Di,j random variables are not independent!

n: number of CAPTCHAS in database,m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates inm random CAPTCHAS

8

-

Linearity of Expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0
otherwise. An indicator random variable. The number of
pairwise duplicates (a random variable) is:

E[D] =
∑

i,j∈[m],i<j

E[Di,j].

For any pair i, j ∈ [m], i < j: E[Di,j] = Pr[Di,j = 1] = 1
n .

E[D] =
∑

i,j∈[m],i<j

1
n
=

(m
2
)

n
=

m(m− 1)
2n

.

Note that the Di,j random variables are not independent!

n: number of CAPTCHAS in database,m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates inm random CAPTCHAS

8

n I
n

Connection to the Birthday Paradox

If there are a 170 people in this room, each whose birthday we
assume to be a uniformly random day of the 365 days in the
year, how many pairwise duplicate birthdays do we expect
there are?

E[D] = m(m− 1)
2n

=
170 · 169
2 · 365 ≈ 39.

9

Connection to the Birthday Paradox

If there are a 170 people in this room, each whose birthday we
assume to be a uniformly random day of the 365 days in the
year, how many pairwise duplicate birthdays do we expect
there are?

E[D] = m(m− 1)
2n

=
170 · 169
2 · 365 ≈ 39.

9

Linearity of Expectation

You take m = 1000 samples. If the database size is as claimed
(n = 1, 000, 000) then expected number of duplicates is:

E[D] = m(m− 1)
2n

= .4995

You see 10 pairwise duplicates and suspect that something is up. But
how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a
random variable deviates a certain distance from its mean.

• Useful in understanding how statistical tests perform, the
behavior of randomized algorithms, the behavior of data drawn
from different distributions, etc.

n: number of CAPTCHAS in database,m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates inm random CAPTCHAS.

10

=

Dipi jareWardehutyi f c i tc i correlated random
D 'EDI; wiables

Linearity of Expectation

You take m = 1000 samples. If the database size is as claimed
(n = 1, 000, 000) then expected number of duplicates is:

E[D] = m(m− 1)
2n

= .4995

You see 10 pairwise duplicates and suspect that something is up. But
how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a
random variable deviates a certain distance from its mean.

• Useful in understanding how statistical tests perform, the
behavior of randomized algorithms, the behavior of data drawn
from different distributions, etc.

n: number of CAPTCHAS in database,m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates inm random CAPTCHAS.

10

Linearity of Expectation

You take m = 1000 samples. If the database size is as claimed
(n = 1, 000, 000) then expected number of duplicates is:

E[D] = m(m− 1)
2n

= .4995

You see 10 pairwise duplicates and suspect that something is up. But
how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a
random variable deviates a certain distance from its mean.

• Useful in understanding how statistical tests perform, the
behavior of randomized algorithms, the behavior of data drawn
from different distributions, etc.

n: number of CAPTCHAS in database,m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates inm random CAPTCHAS.

10

±

Linearity of Expectation

You take m = 1000 samples. If the database size is as claimed
(n = 1, 000, 000) then expected number of duplicates is:

E[D] = m(m− 1)
2n

= .4995

You see 10 pairwise duplicates and suspect that something is up. But
how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a
random variable deviates a certain distance from its mean.

• Useful in understanding how statistical tests perform, the
behavior of randomized algorithms, the behavior of data drawn
from different distributions, etc.

n: number of CAPTCHAS in database,m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates inm random CAPTCHAS.

10

Markov’s Inequality

The most fundamental concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]
t

.

Proof:

E[X] =
∑

s
Pr(X = s) · s ≥

∑

s≥t
Pr(X = s) · s

≥
∑

s≥t
Pr(X = s) · t

= t · Pr(X ≥ t).

Useful form: Pr[X ≥ t · E[X]] ≤ 1
t .

The larger the deviation t, the smaller the probability.

11

Markov’s Inequality

The most fundamental concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]
t

.

Proof:

E[X] =
∑

s
Pr(X = s) · s ≥

∑

s≥t
Pr(X = s) · s

≥
∑

s≥t
Pr(X = s) · t

= t · Pr(X ≥ t).

Useful form: Pr[X ≥ t · E[X]] ≤ 1
t .

The larger the deviation t, the smaller the probability.

11

t s s#43
Pra?s#ABs's

Markov’s Inequality

The most fundamental concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]
t

.

Proof:

E[X] =
∑

s
Pr(X = s) · s ≥

∑

s≥t
Pr(X = s) · s

≥
∑

s≥t
Pr(X = s) · t

= t · Pr(X ≥ t).

Useful form: Pr[X ≥ t · E[X]] ≤ 1
t .

The larger the deviation t, the smaller the probability.

11

Markov’s Inequality

The most fundamental concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]
t

.

Proof:

E[X] =
∑

s
Pr(X = s) · s

≥
∑

s≥t
Pr(X = s) · s

≥
∑

s≥t
Pr(X = s) · t

= t · Pr(X ≥ t).

Useful form: Pr[X ≥ t · E[X]] ≤ 1
t .

The larger the deviation t, the smaller the probability.

11

Markov’s Inequality

The most fundamental concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]
t

.

Proof:

E[X] =
∑

s
Pr(X = s) · s ≥

∑

s≥t
Pr(X = s) · s

≥
∑

s≥t
Pr(X = s) · t

= t · Pr(X ≥ t).

Useful form: Pr[X ≥ t · E[X]] ≤ 1
t .

The larger the deviation t, the smaller the probability.

11

it ised
nonresdality

=

Markov’s Inequality

The most fundamental concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]
t

.

Proof:

E[X] =
∑

s
Pr(X = s) · s ≥

∑

s≥t
Pr(X = s) · s

≥
∑

s≥t
Pr(X = s) · t

= t · Pr(X ≥ t).

Useful form: Pr[X ≥ t · E[X]] ≤ 1
t .

The larger the deviation t, the smaller the probability.

11

d

Markov’s Inequality

The most fundamental concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]
t

.

Proof:

E[X] =
∑

s
Pr(X = s) · s ≥

∑

s≥t
Pr(X = s) · s

≥
∑

s≥t
Pr(X = s) · t

= t · Pr(X ≥ t).

Useful form: Pr[X ≥ t · E[X]] ≤ 1
t .

The larger the deviation t, the smaller the probability.

11

. -Pra t t)

Markov’s Inequality

The most fundamental concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]
t

.

Proof:

E[X] =
∑

s
Pr(X = s) · s ≥

∑

s≥t
Pr(X = s) · s

≥
∑

s≥t
Pr(X = s) · t

= t · Pr(X ≥ t).

Useful form: Pr[X ≥ t · E[X]] ≤ 1
t .

The larger the deviation t, the smaller the probability.

11

o

Markov’s Inequality

The most fundamental concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]
t

.

Proof:

E[X] =
∑

s
Pr(X = s) · s ≥

∑

s≥t
Pr(X = s) · s

≥
∑

s≥t
Pr(X = s) · t

= t · Pr(X ≥ t).

Useful form: Pr[X ≥ t · E[X]] ≤ 1
t .

The larger the deviation t, the smaller the probability.

11

Back to Our Application

Expected number of duplicate CAPTCHAS:

E[D] = m(m−1)
2n = .4995.

You see D = 10 duplicates.

Applying Markov’s inequality, if the real database size is
n = 1, 000, 000 the probability of this happening is:

Pr[D ≥ 10] ≤ E[D]
10

=
.4995
10

≈ .05

This is pretty small – you feel pretty sure the number of unique
CAPTCHAS is much less than 1, 000, 000. But how can you boost your
confidence? We’ll discuss in the next few classes.

n: number of CAPTCHAS in database (n = 1, 000, 000 claimed) , m: number of
random CAPTCHAS drawn to check database size (m = 1000 in this example),
D: number of pairwise duplicates in m random CAPTCHAS.

12

- -

RED31033"¥83
s 789%

Back to Our Application

Expected number of duplicate CAPTCHAS:

E[D] = m(m−1)
2n = .4995.

You see D = 10 duplicates.

Applying Markov’s inequality, if the real database size is
n = 1, 000, 000 the probability of this happening is:

Pr[D ≥ 10] ≤ E[D]
10

=
.4995
10

≈ .05

This is pretty small – you feel pretty sure the number of unique
CAPTCHAS is much less than 1, 000, 000. But how can you boost your
confidence? We’ll discuss in the next few classes.

n: number of CAPTCHAS in database (n = 1, 000, 000 claimed) , m: number of
random CAPTCHAS drawn to check database size (m = 1000 in this example),
D: number of pairwise duplicates in m random CAPTCHAS.

12

Back to Our Application

Expected number of duplicate CAPTCHAS:

E[D] = m(m−1)
2n = .4995.

You see D = 10 duplicates.

Applying Markov’s inequality, if the real database size is
n = 1, 000, 000 the probability of this happening is:

Pr[D ≥ 10] ≤ E[D]
10

=
.4995
10

≈ .05

This is pretty small – you feel pretty sure the number of unique
CAPTCHAS is much less than 1, 000, 000. But how can you boost your
confidence?

We’ll discuss in the next few classes.

n: number of CAPTCHAS in database (n = 1, 000, 000 claimed) , m: number of
random CAPTCHAS drawn to check database size (m = 1000 in this example),
D: number of pairwise duplicates in m random CAPTCHAS.

12

Back to Our Application

Expected number of duplicate CAPTCHAS:

E[D] = m(m−1)
2n = .4995.

You see D = 10 duplicates.

Applying Markov’s inequality, if the real database size is
n = 1, 000, 000 the probability of this happening is:

Pr[D ≥ 10] ≤ E[D]
10

=
.4995
10

≈ .05

This is pretty small – you feel pretty sure the number of unique
CAPTCHAS is much less than 1, 000, 000. But how can you boost your
confidence? We’ll discuss in the next few classes.

n: number of CAPTCHAS in database (n = 1, 000, 000 claimed) , m: number of
random CAPTCHAS drawn to check database size (m = 1000 in this example),
D: number of pairwise duplicates in m random CAPTCHAS.

12

Hash Tables

Want to store a set of items from some finite but massive
universe U of items (e.g., images of a certain size, text
documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution:

Hash tables

• Static hashing since we won’t worry about insertion and
deletion today.

13

Hash Tables

Want to store a set of items from some finite but massive
universe U of items (e.g., images of a certain size, text
documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution:

Hash tables

• Static hashing since we won’t worry about insertion and
deletion today.

13

Hash Tables

Want to store a set of items from some finite but massive
universe U of items (e.g., images of a certain size, text
documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution:

Hash tables

• Static hashing since we won’t worry about insertion and
deletion today.

13

Hash Tables

Want to store a set of items from some finite but massive
universe U of items (e.g., images of a certain size, text
documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables

• Static hashing since we won’t worry about insertion and
deletion today.

13

-

a

070km:
- binnyt r e e

Odom)
- t r i
- linked l ist 01h)

Hash Tables

Want to store a set of items from some finite but massive
universe U of items (e.g., images of a certain size, text
documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables

• Static hashing since we won’t worry about insertion and
deletion today.

13

Hash Tables

• hash function h : U → [n] maps elements from the universe to
indices 1, · · · ,n of an array.

• Typically |U| (n. Many elements map to the same index.

• Collisions: when we insert m items into the hash table we may
have to store multiple items in the same location (typically as a
linked list).

14

J , o o

- o o

Hash Tables

• hash function h : U → [n] maps elements from the universe to
indices 1, · · · ,n of an array.

• Typically |U| (n. Many elements map to the same index.

• Collisions: when we insert m items into the hash table we may
have to store multiple items in the same location (typically as a
linked list).

14

Hash Tables

• hash function h : U → [n] maps elements from the universe to
indices 1, · · · ,n of an array.

• Typically |U| (n. Many elements map to the same index.

• Collisions: when we insert m items into the hash table we may
have to store multiple items in the same location (typically as a
linked list).

14

• o o o probing
•
• i s

chainby

Collisions

Query runtime: O(c) when the maximum number of collisions in a
table entry is c (i.e., must traverse a linked list of size c).

How Can We Bound c?

• In the worst case could have c = m (all items hash to the same
location).

• To avoid this, we’ll assume the hash function is random, and so
this event is very unlikely.

15

Collisions

Query runtime: O(c) when the maximum number of collisions in a
table entry is c (i.e., must traverse a linked list of size c).

How Can We Bound c?

• In the worst case could have c = m (all items hash to the same
location).

• To avoid this, we’ll assume the hash function is random, and so
this event is very unlikely.

15

Collisions

Query runtime: O(c) when the maximum number of collisions in a
table entry is c (i.e., must traverse a linked list of size c).

How Can We Bound c?

• In the worst case could have c = m (all items hash to the same
location).

• To avoid this, we’ll assume the hash function is random, and so
this event is very unlikely.

15

I gn .

Collisions

Query runtime: O(c) when the maximum number of collisions in a
table entry is c (i.e., must traverse a linked list of size c).

How Can We Bound c?

• In the worst case could have c = m (all items hash to the same
location).

• To avoid this, we’ll assume the hash function is random, and so
this event is very unlikely.

15

Random Hash Function

Let h : U → [n] be a fully random hash function.

• I.e., for x ∈ U, Pr(h(x) = i) = 1
n for all i = 1, . . . ,n and h(x),h(y)

are independent for any two items x)= y.

• Caveat 1: It is very expensive to represent and compute such a
random function. We will later see how a hash function
computable in O(1) time function can be used instead.

• Caveat 2: In practice, often suffices to use hash functions like
MD5, SHA-2, etc. that ‘look random enough’.

Think-Pair-Share: Assuming we insert m elements into a hash table
of size n using a fully random hash function, what is the expected
total number of pairwise collisions?

16

e - -

Random Hash Function

Let h : U → [n] be a fully random hash function.

• I.e., for x ∈ U, Pr(h(x) = i) = 1
n for all i = 1, . . . ,n and h(x),h(y)

are independent for any two items x)= y.

• Caveat 1: It is very expensive to represent and compute such a
random function. We will later see how a hash function
computable in O(1) time function can be used instead.

• Caveat 2: In practice, often suffices to use hash functions like
MD5, SHA-2, etc. that ‘look random enough’.

Think-Pair-Share: Assuming we insert m elements into a hash table
of size n using a fully random hash function, what is the expected
total number of pairwise collisions?

16

Random Hash Function

Let h : U → [n] be a fully random hash function.

• I.e., for x ∈ U, Pr(h(x) = i) = 1
n for all i = 1, . . . ,n and h(x),h(y)

are independent for any two items x)= y.

• Caveat 1: It is very expensive to represent and compute such a
random function. We will later see how a hash function
computable in O(1) time function can be used instead.

• Caveat 2: In practice, often suffices to use hash functions like
MD5, SHA-2, etc. that ‘look random enough’.

Think-Pair-Share: Assuming we insert m elements into a hash table
of size n using a fully random hash function, what is the expected
total number of pairwise collisions?

16

* ÷,

↳ my

Linearity of Expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0
otherwise. The number of pairwise duplicates is:

C =
∑

i,j∈[m],i<j

Ci,j.

For any pair i, j, i < j:
E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)]

= 1
n .

E[C] =
∑

i,j∈[m],i<j

1
n
=

(m
2
)

n
=

m(m− 1)
2n

.

Identical to the CAPTCHA analysis!

xi, xj : pair of stored items, m: total number of stored items, n: hash table size,
C: total pairwise collisions in table, h: random hash function.

17

Linearity of Expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0
otherwise. The number of pairwise duplicates is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i, j, i < j:
E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)]

= 1
n .

E[C] =
∑

i,j∈[m],i<j

1
n
=

(m
2
)

n
=

m(m− 1)
2n

.

Identical to the CAPTCHA analysis!

xi, xj : pair of stored items, m: total number of stored items, n: hash table size,
C: total pairwise collisions in table, h: random hash function.

17

Linearity of Expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0
otherwise. The number of pairwise duplicates is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i, j, i < j:
E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)]

= 1
n .

E[C] =
∑

i,j∈[m],i<j

1
n
=

(m
2
)

n
=

m(m− 1)
2n

.

Identical to the CAPTCHA analysis!

xi, xj : pair of stored items, m: total number of stored items, n: hash table size,
C: total pairwise collisions in table, h: random hash function.

17

Linearity of Expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0
otherwise. The number of pairwise duplicates is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i, j, i < j:
E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1

n .

E[C] =
∑

i,j∈[m],i<j

1
n
=

(m
2
)

n
=

m(m− 1)
2n

.

Identical to the CAPTCHA analysis!

xi, xj : pair of stored items, m: total number of stored items, n: hash table size,
C: total pairwise collisions in table, h: random hash function.

17

Linearity of Expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0
otherwise. The number of pairwise duplicates is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i, j, i < j:
E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1

n .

E[C] =
∑

i,j∈[m],i<j

1
n
=

(m
2
)

n
=

m(m− 1)
2n

.

Identical to the CAPTCHA analysis!

xi, xj : pair of stored items, m: total number of stored items, n: hash table size,
C: total pairwise collisions in table, h: random hash function.

17

Linearity of Expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0
otherwise. The number of pairwise duplicates is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i, j, i < j:
E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1

n .

E[C] =
∑

i,j∈[m],i<j

1
n
=

(m
2
)

n
=

m(m− 1)
2n

.

Identical to the CAPTCHA analysis!

xi, xj : pair of stored items, m: total number of stored items, n: hash table size,
C: total pairwise collisions in table, h: random hash function.

17

Collision Free Hashing

E[C] = m(m− 1)
2n

.

• Say we have a lot of space. In particular, let n = 4m2. Then:
E[C] = m(m−1)

8m2 ≤ 1
8 .

• Think-Pair-Share: What is an upper bound on the probability
that we have any collisions, i.e., Pr[C ≥ 1]?

Apply Markov’s Inequality:

Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

So with probability at least 7/8 we have no collisions and worst-case
O(1) query time.

Pretty good...but we are using O(m2) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions.
18

#

→

Collision Free Hashing

E[C] = m(m− 1)
2n

.

• Say we have a lot of space. In particular, let n = 4m2. Then:
E[C] = m(m−1)

8m2 ≤ 1
8 .

• Think-Pair-Share: What is an upper bound on the probability
that we have any collisions, i.e., Pr[C ≥ 1]?

Apply Markov’s Inequality:

Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

So with probability at least 7/8 we have no collisions and worst-case
O(1) query time.

Pretty good...but we are using O(m2) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions.
18

