# COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.

Lecture 19

- Planning to release Problem Set 4 by the end of this week and have it due shortly before Thanksgiving break. After that will have one more problem set covering the last part of the course.
- Next Tuesday will be the last class of the spectral algorithms unit. We will take a closer look at how eigenvectors/singular vectors are actually computed in practice.
- There is no class (for this class in particular) the Tuesday before Thanksgiving 11/26.

#### Summary

#### Last Class: Spectral Clustering

- Spectral clustering: finding good cuts via Laplacian eigenvectors.
- The second smallest eigenvector can be used to find a small but balanced cut.
- Heuristic argument. Mathematical motivation via Courant-Fischer, but no formal proofs.
- Intuition behind Laplacian embeddings.

#### Summary

#### Last Class: Spectral Clustering

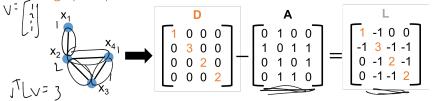
- Spectral clustering: finding good cuts via Laplacian eigenvectors.
- The second smallest eigenvector can be used to find a small but balanced cut.
- Heuristic argument. Mathematical motivation via Courant-Fischer, but no formal proofs.
- Intuition behind Laplacian embeddings.

#### This Class: The Stochastic Block Model

• A simple clustered graph model where we can prove the effectiveness of spectral clustering (i.e., clustering with the Laplacian eigenvectors)

# Review

For a graph with adjacency matrix **A** and degree matrix **D**,  $\mathbf{L} = \mathbf{D} - \mathbf{A}$  is \_the graph Laplacian.

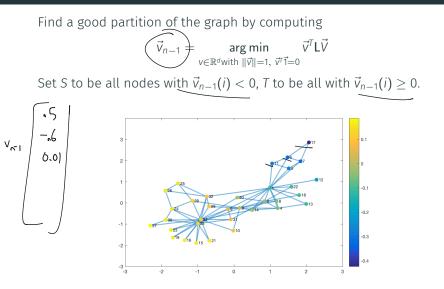


How smooth any vector  $\vec{v}$  is over the graph can be measured by:

$$\sum_{(i,j)\in E} (\vec{v}(i) - \vec{v}(j))^2 = \vec{v}^T L \vec{v}.$$
• The second smallest eigenvector  $\vec{v}_{n-1}$  of L, minimizes  $\vec{v}_{n-1}^T L \vec{v}_{n-1}$ 

subject to  $\vec{v}_{n-1}^T = 0$ . • By thresholding this vector, we tend to find small cuts  $(\vec{v}_{n-1}^T L \vec{v}_{n-1})$  is small), that are well-balanced  $(\vec{v}_{n-1}^T \vec{1} = 0)$ .

#### Cutting With the Second Laplacian Eigenvector

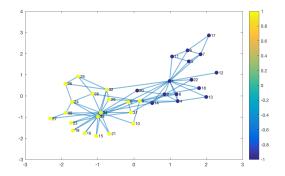


#### Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

$$\vec{\lambda}_{n-1} = \arg\min_{v \in \mathbb{R}^d \text{ with } \|\vec{v}\| = 1, \ \vec{v}^T \vec{1} = 0} \vec{v}^T L \vec{V}$$

Set S to be all nodes with  $\vec{v}_{n-1}(i) < 0$ , T to be all with  $\vec{v}_{n-1}(i) \ge 0$ .



#### Stochastic Block Model

Stochastic Block Model (Planted Partition Model): Let  $G_n(p,q)$  be a distribution over graphs on *n* nodes, split randomly into two groups *B* and *C*, each with n/2 nodes.

# Stochastic Block Model

Stochastic Block Model (Planted Partition Model): Let  $G_n(p,q)$  be a distribution over graphs on n nodes, split randomly into two groups B and C, each with n/2 nodes.

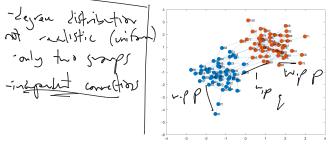
- Any two nodes in the same group are connected with probability *p* (including self-loops).
- Any two nodes in different groups are connected with prob. q < p.
- Connections are independent.

#### Stochastic Block Model

Stochastic Block Model (Planted Partition Model): Let  $G_n(p,q)$  be a distribution over graphs on n nodes, split randomly into two groups B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with probability *p* (including self-loops).
- Any two nodes in different groups are connected with prob. q < p.

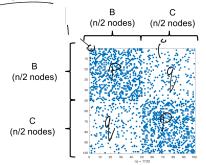
<u>Connections are independent.</u>



# Linear Algebraic View

Let G be a stochastic block model graph drawn from  $G_n(p,q)$ .

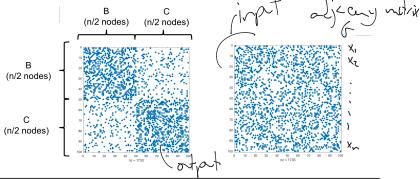
• Let  $A \in \mathbb{R}^{n \times n}$  be the adjacency matrix of *G*, ordered in terms of group ID.



# Linear Algebraic View

Let G be a stochastic block model graph drawn from  $G_n(p,q)$ .

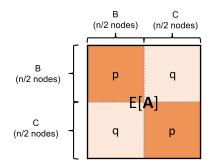
• Let  $\mathbf{A} \in \mathbb{R}^{n \times n}$  be the adjacency matrix of *G*, ordered in terms of group ID.



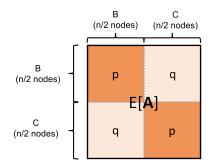
### **Expected Adjacency Matrix**

Letting *G* be a stochastic block model graph drawn from  $G_n(p,q)$  and  $\mathbf{A} \in \mathbb{R}^{n \times n}$  be its adjacency matrix. What is  $\mathbb{E}[\mathbf{A}]$ ?

Letting G be a stochastic block model graph drawn from  $G_n(p,q)$  and  $\mathbf{A} \in \mathbb{R}^{n \times n}$  be its adjacency matrix.  $(\mathbb{E}[\mathbf{A}])_{i,j} = p$  for i, j in same group,  $(\mathbb{E}[\mathbf{A}])_{i,j} = q$  otherwise.

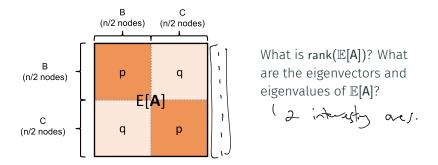


Letting G be a stochastic block model graph drawn from  $G_n(p,q)$  and  $\mathbf{A} \in \mathbb{R}^{n \times n}$  be its adjacency matrix.  $(\mathbb{E}[\mathbf{A}])_{i,j} = p$  for i, j in same group,  $(\mathbb{E}[\mathbf{A}])_{i,j} = q$  otherwise.



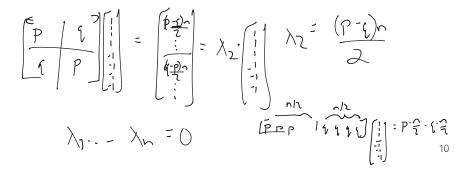
What is rank (E[A])? = 2

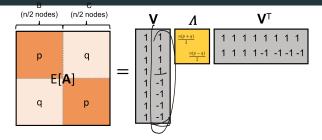
Letting G be a stochastic block model graph drawn from  $G_n(p,q)$  and  $\mathbf{A} \in \mathbb{R}^{n \times n}$  be its adjacency matrix.  $(\mathbb{E}[\mathbf{A}])_{i,j} = p$  for i, j in same group,  $(\mathbb{E}[\mathbf{A}])_{i,j} = q$  otherwise.



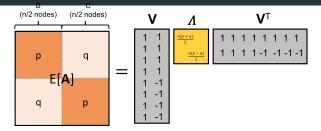
Letting *G* be a stochastic block model graph drawn from  $G_n(p,q)$  and  $\mathbf{A} \in \mathbb{R}^{n \times n}$  be its adjacency matrix, what are the eigenvectors and eigenvalues of  $\mathbb{E}[\mathbf{A}]$ ?

$$\begin{bmatrix} P & q \\ \hline Q & P \end{bmatrix} \begin{bmatrix} i \\ i \\ j \end{bmatrix} = \begin{bmatrix} p + q \\ \hline 2 \\ p + q \\$$





If we compute  $\vec{v}_2$  then we recover the communities *B* and *C*!

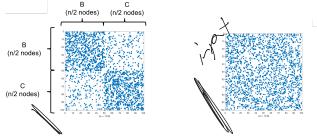


If we compute  $\vec{v}_2$  then we recover the communities B and C!

- Can show that for  $G \sim G_n(p,q)$ , <u>A</u> is close to  $\mathbb{E}[A]$  with high probability (matrix concentration inequality).
- Thus, the true second eigenvector of A is close to
   [1,1,1,...,-1,-1,-1] and gives a good estimate of the communities.

# Spectrum of Permuted Matrix

Goal is to recover communities – so adjacency matrix won't be ordered in terms of community ID (or our job is already done!)



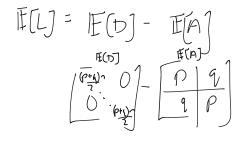
# Spectrum of Permuted Matrix

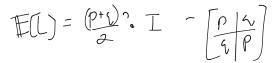
Goal is to recover communities - so adjacency matrix won't be ordered in terms of community ID (or our job is already done!)



- Actual adjacency matrix is **PAP**<sup>T</sup> where **P** is a random permutation matrix and **A** is the ordered adjacency matrix.
- **Exercise:** The first two eigenvectors of  $\mathbf{PAP}^{T}$  are  $\mathbf{P}\vec{v}_{1}$  and  $P\vec{v}_2$ .  $\vec{N}$   $\vec{L}$   $\vec{R}$   $\vec{L}$   $\vec{N}$ •  $P\vec{v}_2 = [1, -1, 1, -1, ..., 1, 1, -1]$  gives community ids.

Letting G be a stochastic block model graph drawn from  $G_n(p,q)$ ,  $\mathbf{A} \in \mathbb{R}^{n \times n}$  be its adjacency matrix and L be its Laplacian, what are the eigenvectors and eigenvalues of  $\mathbb{E}[L]$ ?





 $V_n = \left( \begin{array}{c} c \\ c \\ c \end{array} \right), \lambda_n = 0$ 

Letting G be a stochastic block model graph drawn from  $G_n(p,q)$ ,  $A \in \mathbb{R}^{n \times n}$  be its adjacency matrix and L be its Laplacian, what are the eigenvectors and eigenvalues of  $\mathbb{E}[L]$ ?  $F[L] = (P+V) \rightarrow I - (p q)$  $G = (P+V) \rightarrow I - (p q)$ 

**Upshot:** The second smallest eigenvector of  $\mathbb{E}[L]$  is  $\chi_{B,C}$  – the indicator vector for the cut between the communities.

$$V_{i} \quad i < n^{-1}$$

$$(V_{i}, V_{-} > = 0, \langle V_{i}, V_{n^{-1}} \rangle$$

$$E[L] \vee i = (P_{+}f) n E \vee i = E[A] \vee i$$

$$(P_{+}U) n \vee i = 0$$

$$(P_{+}U) n \vee i = 0$$

$$(P_{+}U) n \vee i = 0$$

**Upshot:** The second smallest eigenvector of  $\mathbb{E}[L]$  is  $\chi_{B,C}$  – the indicator vector for the cut between the communities.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector (i.e., spectral clustering) would exactly recover the two communities *B* and *C*.

**Upshot:** The second smallest eigenvector of  $\mathbb{E}[L]$  is  $\chi_{B,C}$  – the indicator vector for the cut between the communities.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector (i.e., spectral clustering) would exactly recover the two communities *B* and *C*.

How do we show that a matrix (e.g., **A**) is close to its expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.
- Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.

 $V_{L}(A) \neq V_{n-1}(L)$  $\overrightarrow{P} = \begin{pmatrix} P \\ A \\ P \\ P \\ \hline P \hline \hline P \\ \hline P \\ \hline P \hline \hline P \\ \hline P \hline \hline P \hline \hline P \hline \hline P \\ \hline P \hline \hline$ 

Everything after this slide is bonus material, if you are interested in how we formally prove that spectral clustering succeeds in the stochastic block model, using matrix concentration bounds.

**Matrix Concentration Inequality:** If  $p \ge O\left(\frac{\log^4 n}{n}\right)$ , then with high probability  $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$   $(et)^2 \|\mathbf{A}\|_2 : Etclided the end of t$ where  $\|\cdot\|_2$  is the matrix spectral norm (operator norm). For any  $\mathbf{X} \in \mathbb{R}^{n \times d}$ ,  $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|\mathbf{X}z\|_2$ . z Xz m~x ||A7- #[A]7 ||

**Matrix Concentration Inequality:** If  $p \ge O\left(\frac{\log^4 n}{n}\right)$ , then with high probability

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$$

where  $\|\cdot\|_2$  is the matrix spectral norm (operator norm).

For any 
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
,  $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d: \|z\|_2 = 1} \|\mathbf{X}z\|_2$ .

**Exercise:** Show that  $||X||_2$  is equal to the largest singular value of X. For symmetric X (like  $A - \mathbb{E}[A]$ ) show that it is equal to the magnitude of the largest magnitude eigenvalue.

**Matrix Concentration Inequality:** If  $p \ge O\left(\frac{\log^4 n}{n}\right)$ , then with high probability

$$\underline{\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2} \leq O(\sqrt{pn}).$$

where  $\|\cdot\|_2$  is the matrix spectral norm (operator norm).

For any 
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
,  $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d: \|z\|_2 = 1} \|\mathbf{X}z\|_2$ .

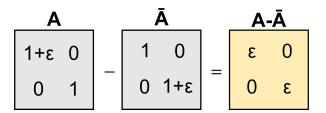
**Exercise:** Show that  $||X||_2$  is equal to the largest singular value of X. For symmetric X (like  $A - \mathbb{E}[A]$ ) show that it is equal to the magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show that the second eigenvectors of <u>A</u> and  $\mathbb{E}[A]$  are close. How does this relate to their difference in spectral norm?

**Davis-Kahan Eigenvector Perturbation Theorem:** Suppose  $\underline{A}, \overline{\underline{A}} \in \mathbb{R}^{d \times d}$  are symmetric with  $||\underline{A} - \overline{\underline{A}}||_2 \leq \epsilon$  and eigenvectors  $v_1, v_2, \ldots, v_d$  and  $\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_d$ . Letting  $\theta(v_i, \overline{v}_i)$  denote the angle between  $v_i$  and  $\overline{v}_i$ , for all i:  $\bigvee_{i} / \bigwedge_{i} \lim_{l \neq i} \lim_{l \neq i} |\theta(v_i, \overline{v}_i)| \leq \frac{\epsilon}{\min_{j \neq i} |\lambda_i - \lambda_j|}$  where  $\lambda_1, \ldots, \lambda_d$  are the eigenvalues of  $\overline{\underline{A}}$ .

The errors get large if there are eigenvalues with similar magnitudes.

#### **Eigenvector Perturbation**



Claim 1 (Matrix Concentration): For  $p \ge O\left(\frac{\log^4 n}{n}\right)$ ,  $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$ 

Claim 2 (Davis-Kahan): For  $p \ge O\left(\frac{\log^4 n}{n}\right)$ ,

$$\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

Claim 1 (Matrix Concentration): For  $p \ge O\left(\frac{\log^4 n}{n}\right)$ ,  $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$ 

Claim 2 (Davis-Kahan): For  $p \ge O\left(\frac{\log^4 n}{n}\right)$ ,

$$\sin\theta(\mathsf{v}_2,\bar{\mathsf{v}}_2) \leq \frac{O(\sqrt{pn})}{\min_{j\neq i}|\lambda_i - \lambda_j|}$$

**Recall:**  $\mathbb{E}[\mathbf{A}]$ , has eigenvalues  $\lambda_1 = \frac{(p+q)n}{2}$ ,  $\lambda_2 = \frac{(p-q)n}{2}$ ,  $\lambda_i = 0$  for  $i \ge 3$ .

Claim 1 (Matrix Concentration): For  $p \ge O\left(\frac{\log^4 n}{n}\right)$ ,  $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$ 

Claim 2 (Davis-Kahan): For  $p \ge O\left(\frac{\log^4 n}{n}\right)$ ,

$$\sin\theta(v_2,\overline{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j\neq i}|\lambda_i - \lambda_j|}$$

**Recall:**  $\mathbb{E}[\mathbf{A}]$ , has eigenvalues  $\lambda_1 = \frac{(p+q)n}{2}$ ,  $\lambda_2 = \frac{(p-q)n}{2}$ ,  $\lambda_i = 0$  for  $i \ge 3$ .

$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right).$$

Claim 1 (Matrix Concentration): For  $p \ge O\left(\frac{\log^4 n}{n}\right)$ ,  $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$ 

Claim 2 (Davis-Kahan): For  $p \ge O\left(\frac{\log^4 n}{n}\right)$ ,

$$\sin\theta(\mathsf{v}_2,\bar{\mathsf{v}}_2) \leq \frac{O(\sqrt{pn})}{\min_{j\neq i}|\lambda_i - \lambda_j|}$$

**Recall:**  $\mathbb{E}[\mathbf{A}]$ , has eigenvalues  $\lambda_1 = \frac{(p+q)n}{2}$ ,  $\lambda_2 = \frac{(p-q)n}{2}$ ,  $\lambda_i = 0$  for  $i \ge 3$ .

$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right).$$

Typically,  $\frac{(p-q)n}{2}$  will be the minimum of these two gaps.

Claim 1 (Matrix Concentration): For  $p \ge O\left(\frac{\log^4 n}{n}\right)$ ,  $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$ 

**Claim 2 (Davis-Kahan):** For  $p \ge O\left(\frac{\log^4 n}{n}\right)$ ,

$$\sin\theta(v_2,\bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j\neq i}|\lambda_i - \lambda_j|} \leq \frac{O(\sqrt{pn})}{(p-q)n/2} = O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$$

**Recall:**  $\mathbb{E}[\mathbf{A}]$ , has eigenvalues  $\lambda_1 = \frac{(p+q)n}{2}$ ,  $\lambda_2 = \frac{(p-q)n}{2}$ ,  $\lambda_i = 0$  for  $i \ge 3$ .

$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right)$$

Typically,  $\frac{(p-q)n}{2}$  will be the minimum of these two gaps.

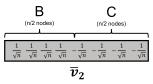
So Far: 
$$\sin \theta(v_2, \overline{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$$
.

**So Far:**  $\sin \theta(v_2, \bar{v}_2) \le O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$ . What does this give us?

• Can show that this implies  $\|v_2 - \bar{v}_2\|_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$  (exercise).

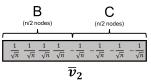
So Far:  $\sin \theta(v_2, \bar{v}_2) \le O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$ . What does this give us?

- Can show that this implies  $\|v_2 \bar{v}_2\|_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$  (exercise).
- $\bar{v}_2$  is  $\frac{1}{\sqrt{n}}\chi_{B,C}$ : the community indicator vector.

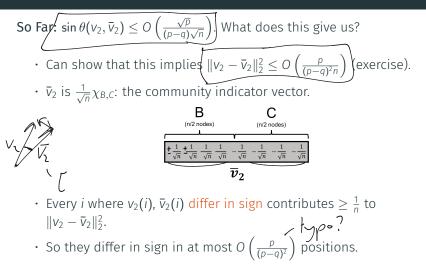


So Far:  $\sin \theta(v_2, \bar{v}_2) \le O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$ . What does this give us?

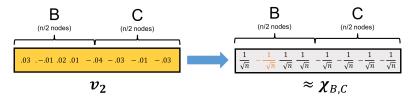
- Can show that this implies  $\|v_2 \bar{v}_2\|_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$  (exercise).
- $\bar{v}_2$  is  $\frac{1}{\sqrt{n}}\chi_{B,C}$ : the community indicator vector.



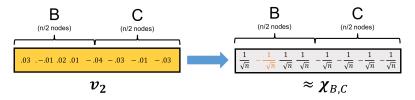
• Every *i* where  $v_2(i)$ ,  $\bar{v}_2(i)$  differ in sign contributes  $\geq \frac{1}{n}$  to  $||v_2 - \bar{v}_2||_2^2$ .



**Upshot:** If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector  $v_2$  and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but  $O\left(\frac{p}{(p-q)^2}\right)$  nodes.

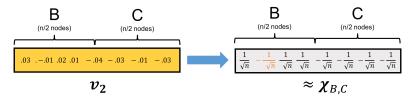


**Upshot:** If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector  $v_2$  and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but  $O\left(\frac{p}{(p-q)^2}\right)$  nodes.



• Why does the error increase as q gets close to p?

**Upshot:** If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector  $v_2$  and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but  $O\left(\frac{p}{(p-q)^2}\right)$  nodes.



- Why does the error increase as q gets close to p?
- Even when  $p q = O(1/\sqrt{n})$ , assign all but an O(n) fraction of nodes correctly. E.g., assign 99% of nodes correctly.