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- Problem Set 3 solutions have been posted.
- Problem Set 4 will be released soon.



Last Class: SVD and Applications of Low-Rank Approximation

- SVD and connections to eigendecomposition and optimal
low-rank approximation.

- Matrix completion

- Entity Embeddings.
This Class: Linear Algebraic Techniques for Graph Analysis

- Start on graph clustering for community detection and
non-linear clustering.

- Spectral clustering: finding good cuts via Laplacian eigenvectors.



Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Community detection in naturally occurring networks.

(a) Zachary Karate Club Graph s E 05 o os

Non-linearly separable data.



Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.
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(a) Zachary Karate Club Graph

(a) Zachary Karate Club Graph
Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph

Let Ve R" be a cut indicator: V(i) =1ifie S. V(i) = —-1ifi €T
Want Vv to have roughly equal numbers of 1s and —1s. l.e,
V1 ~ 0.



The Laplacian View

For a graph with adjacency matrix A and degree matrix D,L=D — A is
the graph Laplacian.
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For any vector V, its ‘smoothness’ over the graph is given by:

S (@) - )Y = VL.

(ij)ek



The Laplacian View

For a cut indicator vector Vv e {—1,1}" with V(i) = —1fori e S
andv(i)=1forieT

1 VIV = 3 jyee(V(0) = V()))? = & - cut(S, T).

2. V1T =T —|S.
Want to minimize both V'LV (cut size) and v¥'1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.



Smallest Laplacian Eigenvector

The smallest eigenvector of the Laplacian is:
- 1T . I
Vp=—-1= argmin V'LV
vn VeR" with |7 =1

with eigenvalue \p(L) = V] LV, = 0. Why?

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"%": diagonal
degree matrix, L € R"*": Laplacian matrix L= D — A.




Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

Vp1 = arg min VLY.
veRN with ||V||=1, VV=0
n
If V,_; were in { 7 %} it would have:
\7n_»|L\7n_‘] — ﬁ
Vh_aVn = =7 T = 1B =0
- l.e, Vo,_1 would indicate the smallest perfectly balanced
cut.

- The eigenvector V,_4 € R" is not generally binary, but still

satisfies a ‘relaxed’ version of this property.

ut(S,T) as small as possible given that

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R™": Laplacian matrix L = D — A. S, T: vertex sets on
different sides of cut.




Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

Vooq = arg min VILV.
veRdwith ||V||=1, VI1=0

Set S to be all nodes with V,_4(i) < 0, T to be all with (i) > 0.
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Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most

commonly used variants of this approach, using the normalized
Laplacian L = D="/2LD~/2,

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors vV_1, ..., V,_, of L. ”
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Laplacian Embedding

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. l.e., minimize

VLW = ) [W(0) - V()

(i))eE
Embedding points with coordinates given by
[Va_1(), Vn—2(j), - - -, Va_r(j)] ensures that coordinates connected by

edges have minimum total squared Euclidean distance.

- Spectral Clustering

- Laplacian Eigenmaps

- Locally linear embedding
+ Isomap

- Node2Vec, DeepWalk, etc.
(variants on Laplacian) 1




Laplacian Embedding

Original Data: (not linearly separable)
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Generative Models

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.

Common Approach: Give a natural generative model for
random inputs and analyze how the algorithm performs on
inputs drawn from this model.

- Very common in algorithm design for data
analysis/machine learning (can be used to justify least
squares regression, k-means clustering, PCA, etc.)

- We'll do this next time, introducing the Stochastic Block
Model.
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