
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 18

1

Logistics

• Problem Set 3 solutions have been posted.
• Problem Set 4 will be released soon.

2

Summary

Last Class: SVD and Applications of Low-Rank Approximation

• SVD and connections to eigendecomposition and optimal
low-rank approximation.

• Matrix completion

• Entity Embeddings.

This Class: Linear Algebraic Techniques for Graph Analysis

• Start on graph clustering for community detection and
non-linear clustering.

• Spectral clustering: finding good cuts via Laplacian eigenvectors.

3

x . o u t

[

-

words→ betas

Summary

Last Class: SVD and Applications of Low-Rank Approximation

• SVD and connections to eigendecomposition and optimal
low-rank approximation.

• Matrix completion

• Entity Embeddings.

This Class: Linear Algebraic Techniques for Graph Analysis

• Start on graph clustering for community detection and
non-linear clustering.

• Spectral clustering: finding good cuts via Laplacian eigenvectors.

3

"
-

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Community detection in naturally occurring networks.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Community detection in naturally occurring networks.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

0 0

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Community detection in naturally occurring networks.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

#

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

org'"'-..!

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

:

:

:

:
:
I

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

:

:

:

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let !v ∈ Rn be a cut indicator: !v(i) = 1 if i ∈ S. !v(i) = −1 if i ∈ T.
Want !v to have roughly equal numbers of 1s and −1s. I.e.,
!vT!1 ≈ 0.

5

÷ §

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let !v ∈ Rn be a cut indicator: !v(i) = 1 if i ∈ S. !v(i) = −1 if i ∈ T.
Want !v to have roughly equal numbers of 1s and −1s. I.e.,
!vT!1 ≈ 0.

5

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let !v ∈ Rn be a cut indicator: !v(i) = 1 if i ∈ S. !v(i) = −1 if i ∈ T.
Want !v to have roughly equal numbers of 1s and −1s. I.e.,
!vT!1 ≈ 0.

5

*÷O¥
¥÷O ;

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let !v ∈ Rn be a cut indicator: !v(i) = 1 if i ∈ S. !v(i) = −1 if i ∈ T.
Want !v to have roughly equal numbers of 1s and −1s. I.e.,
!vT!1 ≈ 0. 5

riff....:.::::
0 0

Exit.I - I

The Laplacian View

For a graph with adjacency matrix A and degree matrix D, L = D− A is
the graph Laplacian.

For any vector !v, its ‘smoothness’ over the graph is given by:
∑

(i,j)∈E

(!v(i)−!v(j))2 = !vTL!v.

6

i ± ¥ ¥ I ÷ ÷ # ÷ ÷ i E l v y

a n
i . 1 , 2

O - -

I ¥002
-

I
e f f -

Ven -

" (1) vii.¥o¥÷¥¥¥£? i n : I : '

The Laplacian View

For a cut indicator vector !v ∈ {−1, 1}n with !v(i) = −1 for i ∈ S
and !v(i) = 1 for i ∈ T:

1. !vTL!V =
∑

(i,j)∈E(!v(i)−!v(j))2 = 4 · cut(S, T).

2. !vT!1 = |T|− |S|.

Want to minimize both !vTL!v (cut size) and !vT!1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.

7

-

i n : *. I.÷±
€÷

" '"t

The Laplacian View

For a cut indicator vector !v ∈ {−1, 1}n with !v(i) = −1 for i ∈ S
and !v(i) = 1 for i ∈ T:

1. !vTL!V =
∑

(i,j)∈E(!v(i)−!v(j))2 = 4 · cut(S, T).
2. !vT!1 = |T|− |S|.

Want to minimize both !vTL!v (cut size) and !vT!1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.

7

-

want both

-
small

The Laplacian View

For a cut indicator vector !v ∈ {−1, 1}n with !v(i) = −1 for i ∈ S
and !v(i) = 1 for i ∈ T:

1. !vTL!V =
∑

(i,j)∈E(!v(i)−!v(j))2 = 4 · cut(S, T).
2. !vT!1 = |T|− |S|.

Want to minimize both !vTL!v (cut size) and !vT!1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.

7

The Laplacian View

For a cut indicator vector !v ∈ {−1, 1}n with !v(i) = −1 for i ∈ S
and !v(i) = 1 for i ∈ T:

1. !vTL!V =
∑

(i,j)∈E(!v(i)−!v(j))2 = 4 · cut(S, T).
2. !vT!1 = |T|− |S|.

Want to minimize both !vTL!v (cut size) and !vT!1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.

7

Smallest Laplacian Eigenvector

The smallest eigenvector of the Laplacian is:

!vn =
1√
n
·!1 = argmin

v∈Rn with ‖!v‖=1
!vTL!v

with eigenvalue λn(L) = !vTnL!vn = 0. Why?

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = D− A.

8

h i maxviw

a g e _ _
"" i i i ." w

x .¥1.1. "lil
v i v o

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

!vn−1 = argmin
v∈Rn with ‖!v‖=1, !vTn!v=0

!vTL!v.

If !vn−1 were in
{
− 1√

n ,
1√
n

}n
it would have:

• !vTn−1L!vn−1 =
4√
n · cut(S, T) as small as possible given that

!vTn−1!vn = 1√
n
!vTn−1

!1 = |T|−|S|
n = 0.

• I.e., !vn−1 would indicate the smallest perfectly balanced
cut.

• The eigenvector !vn−1 ∈ Rn is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = D − A. S, T: vertex sets on
different sides of cut.

9

- I

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

!vn−1 = argmin
v∈Rn with ‖!v‖=1, !vTn!v=0

!vTL!v.

If !vn−1 were in
{
− 1√

n ,
1√
n

}n
it would have:

• !vTn−1L!vn−1 =
4√
n · cut(S, T) as small as possible given that

!vTn−1!vn = 1√
n
!vTn−1

!1 = |T|−|S|
n = 0.

• I.e., !vn−1 would indicate the smallest perfectly balanced
cut.

• The eigenvector !vn−1 ∈ Rn is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = D − A. S, T: vertex sets on
different sides of cut.

9

-0-cbt size• ↳ perfectbalance
- -

- - -

vn.TVn ' 0
- -

•→ → → → →

" "l://tvn.ii.IE!)
Vii:.fi/afqE..vn..li) s o

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

!vn−1 = argmin
v∈Rn with ‖!v‖=1, !vTn!v=0

!vTL!v.

If !vn−1 were in
{
− 1√

n ,
1√
n

}n
it would have:

• !vTn−1L!vn−1 =
4√
n · cut(S, T) as small as possible given that

!vTn−1!vn = 1√
n
!vTn−1

!1 = |T|−|S|
n = 0.

• I.e., !vn−1 would indicate the smallest perfectly balanced
cut.

• The eigenvector !vn−1 ∈ Rn is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = D − A. S, T: vertex sets on
different sides of cut.

9

-

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

!vn−1 = argmin
v∈Rn with ‖!v‖=1, !vTn!v=0

!vTL!v.

If !vn−1 were in
{
− 1√

n ,
1√
n

}n
it would have:

• !vTn−1L!vn−1 =
4√
n · cut(S, T) as small as possible given that

!vTn−1!vn = 1√
n
!vTn−1

!1 = |T|−|S|
n = 0.

• I.e., !vn−1 would indicate the smallest perfectly balanced
cut.

• The eigenvector !vn−1 ∈ Rn is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = D − A. S, T: vertex sets on
different sides of cut.

9

[

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

!vn−1 = argmin
v∈Rdwith ‖!v‖=1, !vT!1=0

!vTL!V.

Set S to be all nodes with !vn−1(i) < 0, T to be all with !v2(i) ≥ 0.

10

G o t s i ze
- O-balance

i÷

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

!vn−1 = argmin
v∈Rdwith ‖!v‖=1, !vT!1=0

!vTL!V.

Set S to be all nodes with !vn−1(i) < 0, T to be all with !v2(i) ≥ 0.

10

§ ° -

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

!vn−1 = argmin
v∈Rdwith ‖!v‖=1, !vT!1=0

!vTL!V.

Set S to be all nodes with !vn−1(i) < 0, T to be all with !v2(i) ≥ 0.

10

§ 494K¥,
m

\

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = D− A.

11

-

✓I v
I t

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = D− A.

11

↳"
'" '
" '

" §
I

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

• Compute smallest k nonzero eigenvectors !vn−1, . . . ,!vn−k of L.

• Represent each node by its corresponding row in V ∈ Rn×k

whose columns are !vn−1, . . .!vn−k.

• Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = D− A.

11

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

• Compute smallest k nonzero eigenvectors !vn−1, . . . ,!vn−k of L.

• Represent each node by its corresponding row in V ∈ Rn×k

whose columns are !vn−1, . . .!vn−k.

• Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = D− A.

11

- .

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

• Compute smallest k nonzero eigenvectors !vn−1, . . . ,!vn−k of L.

• Represent each node by its corresponding row in V ∈ Rn×k

whose columns are !vn−1, . . .!vn−k.

• Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = D− A.

11

⇐
l÷i÷÷
¥

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

• Compute smallest k nonzero eigenvectors !vn−1, . . . ,!vn−k of L.

• Represent each node by its corresponding row in V ∈ Rn×k

whose columns are !vn−1, . . .!vn−k.

• Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = D− A.

11

v iv

⇒

Laplacian Embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

!vTL!v =
∑

(i,j)∈E

[!v(i)−!v(j)]2.

Embedding points with coordinates given by
[!vn−1(j),!vn−2(j), . . . ,!vn−k(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.

• Spectral Clustering

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Node2Vec, DeepWalk, etc.
(variants on Laplacian)

12

- = -

Laplacian Embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

!vTL!v =
∑

(i,j)∈E

[!v(i)−!v(j)]2.

Embedding points with coordinates given by
[!vn−1(j),!vn−2(j), . . . ,!vn−k(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.

• Spectral Clustering

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Node2Vec, DeepWalk, etc.
(variants on Laplacian)

12

-
cnzz.IR

Laplacian Embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

!vTL!v =
∑

(i,j)∈E

[!v(i)−!v(j)]2.

Embedding points with coordinates given by
[!vn−1(j),!vn−2(j), . . . ,!vn−k(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.

• Spectral Clustering

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Node2Vec, DeepWalk, etc.
(variants on Laplacian) 12

Eire

§
±

C

Laplacian Embedding

Original Data: (not linearly separable)

13

agglonetiu
clustering

Kernelme-
thod
pickt u kernel

-

Laplacian Embedding

k-Nearest Neighbors Graph:

13

@

Laplacian Embedding

Embedding with eigenvectors !vn−1,!vn−2: (linearly separable)

13

as

Generative Models

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.

Common Approach: Give a natural generative model for
random inputs and analyze how the algorithm performs on
inputs drawn from this model.

• Very common in algorithm design for data
analysis/machine learning (can be used to justify least
squares regression, k-means clustering, PCA, etc.)

• We’ll do this next time, introducing the Stochastic Block
Model.

14

-
O

Generative Models

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.

Common Approach: Give a natural generative model for
random inputs and analyze how the algorithm performs on
inputs drawn from this model.

• Very common in algorithm design for data
analysis/machine learning (can be used to justify least
squares regression, k-means clustering, PCA, etc.)

• We’ll do this next time, introducing the Stochastic Block
Model.

14

An-I
1Feller

- value
small=
wellputined

bigs notwell-
portioned

- -

- ÷*÷⇒÷¥

