COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2024. Lecture 17

Logistics

- Problem Set 3 is due tomorrow at 11:59pm.
- Due to Veteran's day and a short week this week, no quiz due Monday.

Summary

Last Class

 Finish up optimal low-rank approximation via eigendecomposition.

• Eigenvalue spectrum as a way of measuring low-rank approximation error.

This Class: The SVD and Application of Low-Rank Approximation Beyond Compression

- The Singular Value Decomposition (SVD) and its connection to eigendecomposition and low-rank approximation.
- Low-rank matrix completion (predicting missing measurements using low-rank structure).
- · Entity embeddings (e.g., word embeddings, node embeddings).

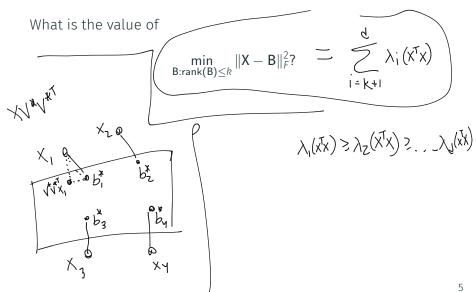
Low-Rank Approximation Review

True or False? when
$$\|X - XVV^T\|_F^2 = \min_{B: rank(B) \le k} \|X - B\|_F^2$$
.

The projected $\|X - XVV^T\|_F^2 = \min_{B: rank(B) \le k} \|X - B\|_F^2$.

The projected $\|X - B\|_F^2$ for any $\|X - B\|_F^2$ for any

Low-Rank Approximation Review



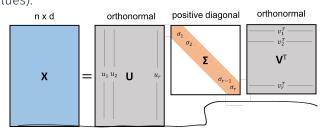
Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices.

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $X \in \mathbb{R}^{n \times d}$ with rank(X) = r can be written as $X = U \Sigma V^T$.

- **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left <u>singular</u> vectors).
- V has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$ (singular values).



Writing
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
 in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:
$$\mathbf{X}^T \mathbf{X} = \left(\mathbf{U} \mathbf{S} \mathbf{V}^T \right)^T \mathbf{U} \mathbf{S} \mathbf{V}^T = \mathbf{V} \mathbf{Z} \mathbf{U}^T \mathbf{V}^T \mathbf{S} \mathbf{V}^T \mathbf{$$

 $X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times rank(X)}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \dots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \mathsf{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\Sigma \in \mathbb{R}^{\text{rank}(X) \times \text{rank}(X)}$: positive diagonal matrix containing singular values of X.

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}}$$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$X^{T}X = V\Sigma U^{T}U\Sigma V^{T} = V\Sigma^{2}V^{T}$$
 (the eigendecomposition)
with single retars = elgeneetrs of $X^{T}X$
squared signer roles = eigendes of $X^{T}X$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$X^TX = V\Sigma U^TU\Sigma V^T = V\Sigma^2 V^T$$
 (the eigendecomposition)

Similarly:
$$XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$$
.

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^T\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T = \mathbf{V}\mathbf{\Sigma}^2\mathbf{V}^T \text{ (the eigendecomposition)}$$

Similarly:
$$XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$$
.

The left and right singular vectors are the eigenvectors of the covariance matrix X^TX and the gram matrix XX^T respectively.

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^T\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T = \mathbf{V}\mathbf{\Sigma}^2\mathbf{V}^T$$
 (the eigendecomposition)

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix X^TX and the gram matrix XX^T respectively.

So, letting $V_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $XV_kV_k^T$ is the best rank-k approximation to X (given by PCA).

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\boldsymbol{X}^T\boldsymbol{X} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = \boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T \text{ (the eigendecomposition)}$$

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix X^TX and the gram matrix XX^T respectively.

So, letting $V_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $XV_kV_k^T$ is the best rank-k approximation to X (given by PCA).

What about $\mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$?

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\boldsymbol{X}^T\boldsymbol{X} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = \boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T \text{ (the eigendecomposition)}$$

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix X^TX and the gram matrix XX^T respectively.

So, letting $V_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $XV_kV_k^T$ is the best rank-k approximation to X (given by PCA).

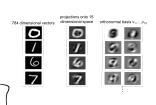
What about $\mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$? Gives exactly the same approximation! $\mathbf{U}_k \mathbf{U}_k^T \mathbf{X} = \mathbf{X} \mathbf{U}_k \mathbf{V}_k^T \mathbf{X}$

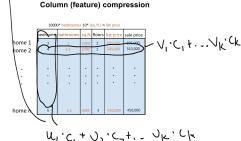
The best low-rank approximation to **X**:

 $X_{k} = \arg\min_{\text{rank} - k} \sup_{B \in \mathbb{R}^{n \times d}} \|X - B\|_{F} \text{ is given by:}$ $X_{k} = \underbrace{XV_{k}V_{k}^{T} = U_{k}U_{k}^{T}X}_{F} \text{ points optimal points.$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

Row (data point) compression



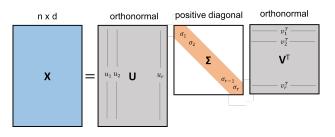


The best low-rank approximation to X:

$$X_k = \operatorname{arg\,min}_{\operatorname{rank}\,-k} \, _{\mathsf{B} \in \mathbb{R}^{n imes d}} \, \|\mathsf{X} - \mathsf{B}\|_F$$
 is given by:

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k} \mathbf{U}_{k}^{\mathsf{T}} \mathbf{X}$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

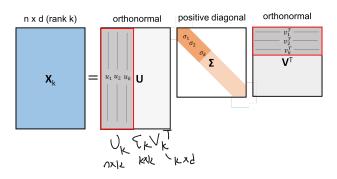


The best low-rank approximation to X:

$$\mathbf{X}_k = \mathop{\mathsf{arg\,min}}_{\mathsf{rank}\,-k} \mathop{\mathsf{B}}_{\in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$$
 is given by:

$$X_k = XV_kV_k^T = U_kU_k^TX = J_kS_{lk}J_k^T$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

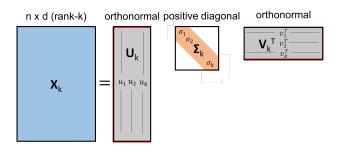


The best low-rank approximation to X:

 $X_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ B \in \mathbb{R}^{n \times d}} \|X - B\|_F$ is given by:

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k} \mathbf{U}_{k}^{\mathsf{T}} \mathbf{X} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{\mathsf{T}}$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k



The best low-rank approximation to **X**:

$$X_{k} = \arg\min_{\text{rank} - k} \sup_{B \in \mathbb{R}^{n \times d}} \|X_{k} B\|_{F} \text{ is given by:}$$

$$X = XV_{k}V_{k}^{T} = U_{k}U_{k}^{T}X = U_{k}\Sigma_{k}V_{k}^{T}$$

$$XV_{k}V_{k}^{T} = U_{k}U_{k}^{T}X = U_{k}U_$$

d Lixk

honormal columns

The best low-rank approximation to **X**:

$$X_k = \operatorname{arg\,min}_{\operatorname{rank}\,-k} \, _{\mathsf{B} \in \mathbb{R}^{n \times d}} \| \mathsf{X} - \mathsf{B} \|_{\mathit{F}} \, \text{is given by:}$$

$$X_{k} = XV_{k}V_{k}^{T} = U_{k}U_{k}^{T}X = U_{k}\Sigma_{k}V_{k}^{T}$$

$$V_{k}V_{k}^{T} = V_{k}V_{k}^{T} \quad \forall \xi V^{T}$$

$$V_{k}[I_{k}! \circ J \xi V^{T}]$$

$$V_{k}[\Sigma_{k}! \circ J V^{T}]$$

$$V_{k}[\Sigma_{k}! \circ J V^{T}]$$

$$V_{k}[\Sigma_{k}V_{k}]$$

$$\begin{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 6_1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} = 0_1 6_1 + 0_2 6_2 + 0_3 6_k = 0_k \sum_{k=1}^{n} (1 + 0_1 k) \frac{1}{2} C_k$$

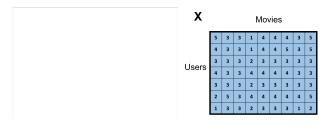
SVD Review

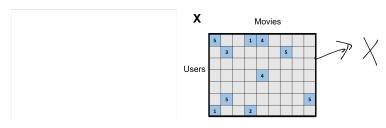
- Every $\mathbf{X} \in \mathbb{R}^{n \times d}$ can be written in its SVD as $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$.
- $\mathbf{U} \in \mathbb{R}^{n \times r}$ (orthonormal) contains the eigenvectors of \mathbf{X}^T . $\mathbf{V} \in \mathbb{R}^{d \times r}$ (orthonormal) contains the eigenvectors of $\mathbf{X}^T \mathbf{X}$. $\mathbf{\Sigma} \in \mathbb{R}^{r \times r}$ (diagonal) contains their eigenvalues.
- $\underline{ \cdot \ \mathsf{U}_k \mathsf{U}_k^\mathsf{T} \mathsf{X} = \mathsf{X} \mathsf{V}_k \mathsf{V}_k^\mathsf{T} = \mathsf{U}_k \mathbf{\Sigma}_k \mathsf{V}_k^\mathsf{T} = \underset{\mathsf{B} \ \mathsf{s.t.} \ \mathsf{rank}(\mathsf{B}) \leq k}{\mathsf{arg} \ \mathsf{min}} \|\mathsf{X} \mathsf{B}\|_{\mathsf{F}}. }$

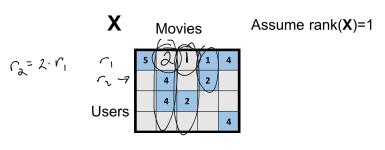
Applications of Low-Rank Approximation

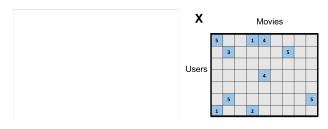
Beyond Compression

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix).

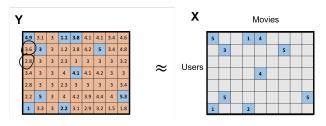






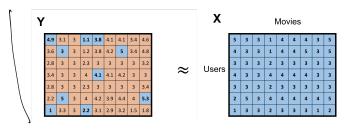


Solve:
$$Y = \underset{B \text{ s.t. rank}(B) \leq k}{\operatorname{arg min}} \sum_{\text{observed } (j,k)} \left[X_{j,k} - B_{j,k} \right]^2$$



Solve:
$$Y = \underset{B \text{ s.t. rank}(B) \leq k}{\operatorname{arg min}} \sum_{\text{observed } (j,k)} \left[X_{j,k} - B_{j,k} \right]^2$$

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.



Solve:
$$Y = \underset{B \text{ s.t. } rank(B) \leq k}{arg \min} \sum_{\text{observed } (j,k)} \left[X_{j,k} - B_{j,k} \right]^2$$

Under certain assumptions, can show that ${\bf Y}$ well approximates ${\bf X}$ on both the observed and (most importantly) unobserved entries.

Entity Embeddings

Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

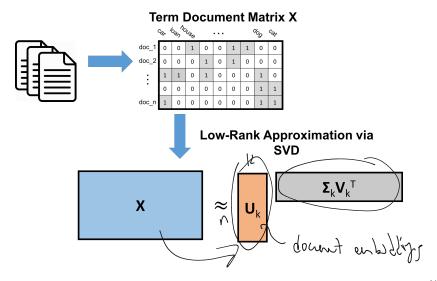
Entity Embeddings

Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

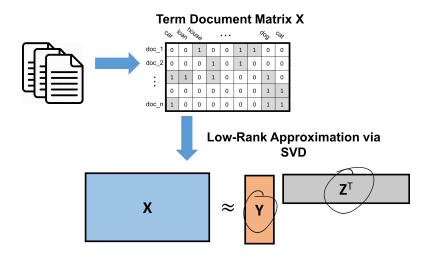
- Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Classic Approach: Convert each item into a (very) high-dimensional feature vector and then apply low-rank approximation.

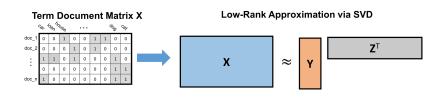
Example: Latent Semantic Analysis

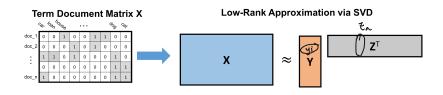


Example: Latent Semantic Analysis



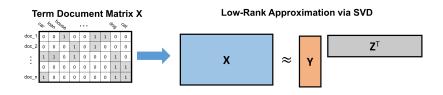
Example: Latent Semantic Analysis





• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^{\mathsf{T}}\|_F$ is small, then on average,

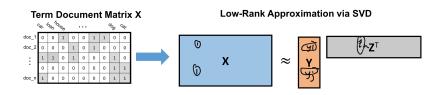
$$\underbrace{\mathbf{X}_{i,a}} \approx \underbrace{(\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a}} = \langle \vec{y}_i, \vec{z}_a \rangle.$$



• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$X_{i,a} \approx (YZ^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

• I.e., $\langle \vec{y_i}, \vec{z}_a \rangle \approx$ 1 when doc_i contains $word_a$.

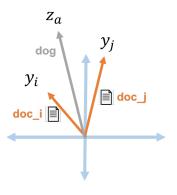


• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

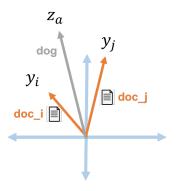
$$X_{i,a} \approx (YZ^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

- I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx$ 1 when doc_i contains $word_a$.
- If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$.

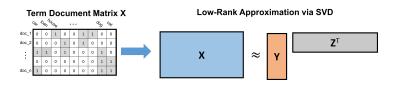
If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$



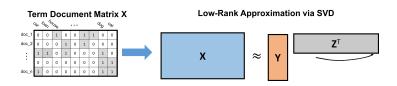
If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$



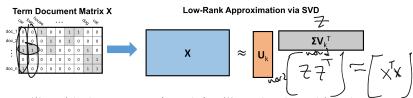
Another View: Each column of Y represents a 'topic'. $y_i(j)$ indicates how much doc_i belongs to topic j. $Z_a(j)$ indicates how much $word_a$ associates with that topic.



• Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.



- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_K^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX .



- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_K^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX .
- Ctaim: ZZ^T is the best rank-k approximation of X^TX . I.e., $\arg\min_{\mathrm{rank}-k} \|X^TX B\|_F$

LSA gives a way of embedding words into *k*-dimensional space.

• Embedding is via low-rank approximation of $\mathbf{X}^T\mathbf{X}$: where $(\mathbf{X}^T\mathbf{X})_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.

LSA gives a way of embedding words into *k*-dimensional space.

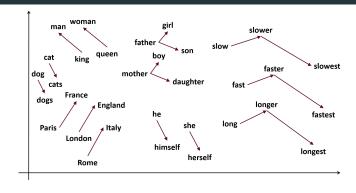
- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.

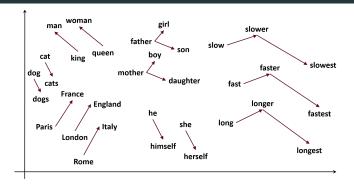
LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing X^TX with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.





Note: word2ved is typically described as a neural-network method, but can be viewed as just a low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.

Questions?