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Logistics

• Problem Set 3 is due tomorrow at 11:59pm.

• Due to Veteran’s day and a short week this week, no quiz due
Monday.
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Summary

Last Class

• Finish up optimal low-rank approximation via
eigendecomposition.

• Eigenvalue spectrum as a way of measuring low-rank
approximation error.

This Class: The SVD and Application of Low-Rank Approximation
Beyond Compression

• The Singular Value Decomposition (SVD) and its connection to
eigendecomposition and low-rank approximation.

• Low-rank matrix completion (predicting missing measurements
using low-rank structure).

• Entity embeddings (e.g., word embeddings, node embeddings).

3

E x -
L L -

-

-



Low-Rank Approximation Review

True or False?

min
V∈Rd×k:VTV=I

‖X− XVVT‖2F = min
B:rank(B)≤k

‖X− B‖2F.
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Low-Rank Approximation Review

What is the value of

min
B:rank(B)≤k

‖X− B‖2F?
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Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices.

Any
matrix X ∈ Rn×d with rank(X) = r can be written as X = UΣVT.

• U has orthonormal columns !u1, . . . ,!ur ∈ Rn (left singular
vectors).

• V has orthonormal columns !v1, . . . ,!vr ∈ Rd (right singular
vectors).

• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular
values).
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Connection of the SVD to Eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX =

VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to !v1, . . . ,!vk, we know that
XVkVTk is the best rank-k approximation to X (given by PCA).

What about UkUT
kX where Uk ∈ Rn×k has columns equal to !u1, . . . ,!uk?

Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
!u1,!u2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns !v1,!v2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xk = argminrank−k B∈Rn×d ‖X− B‖F is given by:

Xk = XVkVTk = UkUT
kX

= UkΣkVTk

Correspond to projecting the rows (data points) onto the span of Vk
or the columns (features) onto the span of Uk
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SVD Review

• Every X ∈ Rn×d can be written in its SVD as UΣVT.

• U ∈ Rn×r (orthonormal) contains the eigenvectors of XXT.
V ∈ Rd×r (orthonormal) contains the eigenvectors of XTX.
Σ ∈ Rr×r (diagonal) contains their eigenvalues.

• UkUT
kX = XVkVTk = UkΣkVTk = argmin

B s.t. rank(B)≤k
‖X− B‖F.
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Applications of Low-Rank Approximation
Beyond Compression
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Matrix Completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).

Classic example: the Netflix prize problem.

Solve: Y = argmin
B s.t. rank(B)≤k

∑

observed (j,k)

[
Xj,k − Bj,k

]2

Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.
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Entity Embeddings

Dimensionality reduction embeds d-dimensional vectors into k
dimensions. But what about when you want to embed objects
other than vectors?

• Documents (for topic-based search and classification)
• Words (to identify synonyms, translations, etc.)
• Nodes in a social network

Classic Approach: Convert each item into a (very)
high-dimensional feature vector and then apply low-rank
approximation.

13

←



Entity Embeddings

Dimensionality reduction embeds d-dimensional vectors into k
dimensions. But what about when you want to embed objects
other than vectors?

• Documents (for topic-based search and classification)
• Words (to identify synonyms, translations, etc.)
• Nodes in a social network

Classic Approach: Convert each item into a (very)
high-dimensional feature vector and then apply low-rank
approximation.

13

=



Example: Latent Semantic Analysis
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Example: Latent Semantic Analysis
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Example: Latent Semantic Analysis

• If the error ‖X− YZT‖F is small, then on average,

Xi,a ≈ (YZT)i,a = 〈!yi,!za〉.

• I.e., 〈!yi,!za〉 ≈ 1 when doci contains worda.

• If doci and docj both contain worda, 〈!yi,!za〉 ≈ 〈!yj,!za〉 ≈ 1.
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Example: Latent Semantic Analysis

If doci and docj both contain worda, 〈!yi,!za〉 ≈ 〈!yj,!za〉 ≈ 1

Another View: Each column of Y represents a ‘topic’. !yi(j) indicates
how much doci belongs to topic j. !za(j) indicates how much worda

associates with that topic.
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Example: Latent Semantic Analysis

• Just like with documents, !za and !zb will tend to have high dot
product if worda and wordb appear in many of the same
documents.

• In an SVD decomposition we set ZT = ΣkVTK.

• The columns of Vk are equivalently: the top k eigenvectors of
XTX.

• Claim: ZZT is the best rank-k approximation of XTX. I.e.,
argminrank−k B ‖XTX− B‖F
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Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XTX: where (XTX)a,b
is the number of documents that both worda and wordb appear
in.

• Think about XTX as a similarity matrix (gram matrix, kernel
matrix) with entry (a,b) being the similarity between worda and
wordb.

• Many ways to measure similarity: number of sentences both
occur in, number of times both appear in the same window of w
words, in similar positions of documents in different languages,
etc.

• Replacing XTX with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastText, etc.
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Example: Word Embedding

Note: word2vec is typically described as a neural-network
method, but can be viewed as just a low-rank approximation of
a specific similarity matrix. Neural word embedding as implicit
matrix factorization, Levy and Goldberg.
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Questions?
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