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- Problem Set 3 is due tomorrow at 11:59pm.

- Due to Veteran's day and a short week this week, no quiz due
Monday.



Last Class

- Finish up optimal low-rank approximation via
eigendecomposition.

?7{ - Eigenvalue spectrum as a way of measuring low-rank

approximation error. IK l\

This Class: The SVD and Application of Low-Rank Approximation
.
Beyond Compression

- The Singular Value Decomposition (SVD) and its connection to
eigendecomposition and low-rank approximation.

- Low-rank matrix completion (predicting missing measurements
using low-rank structure).

- Entity embeddings (e.g., word embeddings, node embeddings).
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Low-Rank Approximation Review
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Low-Rank Approximation Review
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Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices.



Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"™*9 with rank(X) = r can be written as X = UZV',

- U has orthonormal columns iy, ..., U, € R" (left singular
—_—
vectors).
-V has orthonormal columns V4, ..., v, € R? (right singular
vectors).
- X is diagonal with elements oy > 0, > ... > o, > 0 (singular
< values). —
nxd orthonormal  positive diagonal ~ orthonormal
Xy,
ad
b3 VT
x = WM U Uy 0rs .
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Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":

XTX — (\)i\]T)TUi\/T :\/i\jr i\/T - \/iz’\/T

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X =vzu'uzv’

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X =VEUTUZV" = vE2V"

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

4
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Writing X € R4 in its singular value decomposition X = UXV":
{/ XX = V}:UTU}:VT V}: 2\T (the eigendecomposition)
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X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-

agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X = VEUTUZV’ = vE?V' (the eigendecomposition)
Similarly: XX = UEV'VEU" = UE’U.

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X = VEUTUZV’ = vE?V' (the eigendecomposition)
Similarly: XX" = UZVVEUT = UX?U’.

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX respectively.

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X = VEUTUZV’ = vE?V' (the eigendecomposition)

Similarly: XX" = UZVVEUT = UX?U’.

The left and right singular vectors are the eigenvectors of the

covariance matrix X'X and the gram matrix XX respectively.

So, letting Vi, € R%*F have columns equal to_Vy... ..V, we know that
XV, V] is the best rank-k approximation to X (given by PCA).
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X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X = VEUTUZV’ = vE?V' (the eigendecomposition)
Similarly: XX" = UZVVEUT = UX?U’.

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX respectively.

So, letting V, € RY*F have columns equal to V4, ..., vy, we know that
XV, V] is the best rank-k approximation to X (given by PCA).

What about U,U[X where Uy, € Rk has columns equal to U, . .., U?

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X = VEUTUZV’ = vE?V' (the eigendecomposition)

Similarly: XX" = UZVVEUT = UX?U’.

The left and right singular vectors are the eigenvectors of the

covariance matrix X'X and the gram matrix XX respectively.

So, letting V, € RY*F have columns equal to V4, ..., vy, we know that
XV, V] is the best rank-k approximation to X (given by PCA).

What about U,U[X where Uy, € Rk has columns equal to Uy, ..., Ug?
Gives exactly the same approximation! \)KU X = XN \/

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X: (
Xk’ = arg minrank —k BeRnxd ||X -B
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min . _r gernxd | X — BJ|F IS given by:

X, = XV,V], = U UX

Correspond to projecting the rows (data points) onto the span of V,
or the columns (features) onto the span of Uy
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min . _r gernxd | X — BJ|F IS given by:

<
X =XVV[ = UUix 3 V&NV

Correspond to projecting the rows (data points) onto the span of V,
or the columns (features) onto the span of U,
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min,. _r sernxd | X — BJ|F IS given by:

Xp = XVpV}| = URUIX = U X, V]

Correspond to projecting the rows (data points) onto the span of V,
or the columns (features) onto the span of U,

nxd (rank-k)  orthonormal positive diagonal  orthonormal
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The SVD and Optimal Low-Rank Approximation

=
The best low-rank approximation to X: /
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X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min,. _r sernxd | X — BJ|F IS given by:

X = XV,V], = U,UIX = U, V]

000X = VU gV
NEXLIEAN
\)\L[ﬁﬂ- 0] Vi 6

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




SVD Review

-
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- Every X € R"*9 can be written in its SVD as UXV'.

- U e R"™ (orthonormal) contains the eigenvectors of XX'.
dxr - . T
VeR (orthonormal) cqn}g\m\;@t(h&seggnvectors of X'X.
¥ ¢ R™" (diagonal) containsftheir eigenvalues.
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Applications of Low-Rank Approximation
Beyond Compression



Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
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Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies

Users

min|w (s lw|s|n
wlo|lw lwlw| w|lw
wlw w wlwl w lw

[N IS YN PN IV R P
wla|lw|a|lw|/s|as
wls|lw|a|lw|/s|s
wla|lw|a|lw la|a
e lw|w|lw lw| w
Nlo|lw|w|w|la|a
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Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but

believe is close to rank-k (i.e., well approximated by a rank k matrix).

Classic example: the Netflix prize problem.

X

Users

Movies

1

4

7 X
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Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies Assume rank(X)=1
=\ o
o= L7 ~ HEUIRAR
~ 7 4 2
Users e
\/ 4
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Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies

5 1|4

Users

Solve: Y= argmin Z X — Bjyf?}z

B st. rank(B)<k observed (j,k)
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Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Y X Movies
49(31| 3 (113841 |41(34/|46 5 1 4
36)3 3 |12(38|42| 5 |34|48 3 5
1.8) 3 3 (23| 3 3 3 3 |32
34| 3 3 4 (414142 3 3 z Users 4
28| 3 3 (23] 3 3 3 3 |34
22| 5 3 4 |42(39|44| 4 |53 5 5
1 (33| 3 [22]31]|29(32|15|18 1 2
ve: . 2
Solve: Y= argmin Z [XJJ? — Bj7k}

B st. rank(B)<k observed (j,k)
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Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Y X Movies
49(31| 3 (113841 |41(34/|46 = 3 3 1 4 4 4 3 5
36| 3 3 (12|38(|42| 5 |34 |48 4 (3|3 1(4|4|5|3|5
28| 3 3 (23| 3 3 3 3 |32 3 3 3 2 3 3 3 3 3
~ Users
34| 3 3 4 (414142 3 3 4 3 3 4 4 4 4 3 3
28| 3 3 (23|33 3 (3|34 3|3 |3(2(3|3(3[3]3
22| 5 3 4 |42(39|44| 4 |53 2 5 3 4 4 4 4 4 5
1(33) 3 (22(31]29(32(15]|18 1(3(|3(2|3|3(3 1|2
Solve: Y= argmin [X-kf B-k}z
s /s

B st. rank(B)<k observed (j,k)

Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.
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Entity Embeddings

Dimensionality reduction embeds d-dimensional vectors into R
dimensions. But what about when you want to embed objects
other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

13



Entity Embeddings

Dimensionality reduction embeds d-dimensional vectors into k
dimensions. But what about when you want to embed objects
other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Classic Approach: Convert each item into a (very)
high-dimensional feature vector and then apply low-rank

approximation.
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Example: Latent Semantic Analysis

Term Document Matrix X
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Low-Rank Approximation via
SVD
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Example: Latent Semantic Analysis

Term Document Matrix X

%, %
%o Q9 Usg

%0 Cop
docifo|o|21|oflo|1|21|0]|0
doc2fo|o|o|1|0o|21|0f|0]|0

1/1|of1|lofofo0o|1]0
ofoflofofofo|o|1]|1
docnli1|o|ofofofofo|1]1

Low-Rank Approximation via
SVD
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Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
% ’%/"o&e % %
dc1lofof2|ofo|2]|1|[0]0
1{1|o|1|ofofo|1]o0 - ~
ofojojofojoOo]|oO 1 1 x ~ Y
doc_nj 1 ofojojofo0|oO 1 1
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Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
% ’%/"o&e % %
dc1lofof2|ofo|2]|1|[0]0
doc2Jo (0|0 1 o 1|{0(|0|0
1|2|of1]ofo|of1]o0 - x ~
ofojojofojoOo]|oO 1 1
doc_nj 1 ofojojofo0|oO 1 1

If the error ||X — YZT||¢ is small, then on average,

Xi,a ~ (YZT)i,a - <)7)'aza>'
g

~—
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Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
% ’%/"o&e % %
dc1lofof2|ofo|2]|1|[0]0
1{1|o|1|ofofo|1]o0 - ~
ofojojofojoOo]|oO 1 1 x ~ Y
doc_nj 1 ofojojofo0|oO 1 1

If the error ||X — YZT||¢ is small, then on average,
Xi,a ~ (YZT)i,a = <)7)'aza>'

l.e., (Vi,Za) = 1 when doc; contains word,.
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Example: Latent Semantic Analysis

Term Document Matrix X

o, %,
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doc_1] o

0

1

0

doc_2

0

1

0
1
0
1

doc_n

olofr|e

0
0
0
0

olofr|r|e

o|lofo|elo]:

1
1
0
0
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0
0
0
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1

|

Low-Rank Approximation via SVD

- If the error ||X — YZT||¢ is small, then on average,

Xi,a ~ (YZT)i,a - <)7)'aza>'

- le, (Vi,Zq) ~ 1 when doc; contains word,.

- If doc; and dog; both contain wordy, (Vi,Za) = (Vj,Za) =~ 1.

15



Example: Latent Semantic Analysis

If doc; and doc; both contain wordy, (Vi,Za) = (Vj,Za) =1

Zq

Yj

docj

Vi
doc i
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Example: Latent Semantic Analysis

If doc; and doc; both contain wordy, (Vi,Za) = (Vj,Za) =1

Another View:
how much doc; belongs
associates wi at topic.

opic. Vi(j) indicates
es how much wordg,
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Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
o e %,

doc_1] o ofoj1f1]|o0fo0
fle oo o [o [ | ~
oo oo ool X Y

doc_ 1 ofojofo|o|1]|1

- Just like with documents, Z, and Z, will tend to have high dot
product if word, and word, appear in many of the same
documents.
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Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
o e %,

dcilofof21|o|of1|1]0]0
de2lojoojrjofrjololo
.,,m”n,u- X ~
: ~
0 0 1 Y

oo ofofo 1

docnf1|o ofolo 1

- Just like with documents, Z, and Z, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set Z" = XV},

- The columns of&-are equivalently: the top k eigenvectors of
XX.

—
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Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
ol %
doc_1¥o\f o\ 1|0 |0|1|1|0]|0
docglodofo|1|of1|{o|o]0
e o (oo [ | X
off o [ololo]o]o|x]x
doc_ ofofojofojof1]|1

\[% 2 ":[xTx

- Just like with documents, Z, and Z, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set Z" = XV},

- The columns of Vj are equivalently: the top k eigenvectors of

X'X. .
F)Lz{‘“\y” . 4 -
- Ctsinr gT is the best rank-k approximation of X’X. l.e,

arg minrank —k B HXTX - BHF

17



Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear
in.

18



Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear
-

in.

- Think about X"X as a similarity matrix (gram matrix, kernel
matrix) with entry (a, b) being the similarity between word, and
wordp.
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Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear
in.

- Think about X"X as a similarity matrix (gram matrix, kernel
matrix) with entry (a, b) being the similarity between word, and
wordp.

- Many ways to measure similarity: number of sentences both
occur in, number of times both appear in the same window of w
words, in similar positions of documents in different languages,
etc.
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Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear
in.

- Think about X"X as a similarity matrix (gram matrix, kernel
matrix) with entry (a, b) being the similarity between word, and
wordp.

- Many ways to measure similarity: number of sentences both
occur in, number of times both appear in the same window of w
words, in similar positions of documents in different languages,
etc.

- Replacing XX with these different metrics (sometimes
appropriately transformed) leads to popular word embedding

algorithms: w' fastText, etc.
_/
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Example: Word Embedding

dogs

Paris

woman

man girl
\\ father 4‘ con slow
cat king 9U€€n boy
dog mother k
\ cats daughter
France

England
he
Italy \
Londo%

Rome

himself
herself

fast

slower

faster

longer

fastest
she long / \

slowest

longest
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Example: Word Embedding

woman glrl
slower

man
\\ father slow
cat king queen
slowest

faster

dog \ mother k
\4 cats daughter fast /\
France
dogs England longer
/ / he /' fastest
Paris Italy \ S long
Londor/

himself Jongest

Rome herself

Note: @ord2vec\is typically described as a neural-network
method, but can be viewed as just a low-rank approximation of
a specific similarity matrix. Neural word embedding as implicit

matrix factorization, Levy and Goldberg.
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Questions?
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