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Logistics

• Problem Set 3 due next Friday 11/8 at 11:59pm.

• There is no class next Tuesday due to election day. But I will
hold my regular office hours from 2:30-3:30pm. Location TBD.

• Get any midterm regrade requests in by tomorrow.
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Summary

Last Class:

• Finding an optimal orthogonal basis V ∈ Rd×k to minimize
∥X− XVVT∥2F when the data does not exactly lie in a
low-dimensional subspace.

• Solution by taking the top k eigenvectors of XTX (this is
PCA/optimal low-rank approximation)

• Greedy optimization problem and connection to
Courant-Fischer principal.

This Class:

• Wrap up optimal low-rank approximation.

• Measuring the error of the low-rank approximation via
covariance matrix eigenvalues.

• General linear algebra review. 3



Best Fit Subspace

If x⃗1, . . . , x⃗n are close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as
XVVT. XV gives optimal embedding of X in V .

We can find V by solving the optimization problem:

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F = argmax
orthonormal V∈Rd×k

∥XV∥2F =
k∑

i=1

∥X⃗vi∥22

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .

4



Solution via Eigendecomposition

We can find the columns of V, v⃗1, . . . , v⃗k greedily.

v⃗1 = argmax
v⃗ with ∥v∥2=1

∥X⃗v∥22

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

∥X⃗v∥22

. . .

v⃗k = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<k

∥X⃗v∥22.

v⃗1, . . . , v⃗k are the top k eigenvectors of XTX by the Courant-Fischer
Principle.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Low-Rank Approximation via Eigendecomposition
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Low-Rank Approximation via Eigendecomposition

Upshot: Letting Vk have columns v⃗1, . . . , v⃗k corresponding to
the top k eigenvectors of the covariance matrix XTX, Vk is the
orthogonal basis minimizing

∥X− XVkVTk∥2F.

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of XTX.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Spectrum Analysis

Let v⃗1, . . . , v⃗k be the top k eigenvectors of XTX (the top k principal
components). Approximation error is:

∥X− XVkVTk∥2F = ∥X∥2F tr(XTX)− ∥XVkVT
k∥2F tr(VTkXTXVk)

=
d∑
i=1

λi(XTX)−
k∑

i=1

v⃗Ti XTX⃗vi

=
d∑
i=1

λi(XTX)−
k∑

i=1

λi(XTX) =
d∑

i=k+1

λi(XTX)

• Exercise: For any matrix A, ∥A∥2F =
∑d

i=1 ∥a⃗i∥22 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Spectrum Analysis

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of XTX) is:

∥X− XVkVTk∥2F =
d∑

i=k+1

λi(XTX)

• Choose k to balance accuracy/compression – often at an ‘elbow’.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Spectrum Analysis

Plotting the spectrum of XTX (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
x⃗1, . . . , x⃗n are to a low-dimensional subspace).

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Spectrum Analysis

Exercises:

1. Show that the eigenvalues of XTX are always positive. Hint:
Use that λj = v⃗Tj XTX⃗vj.

2. Show that for symmetric A, the trace is the sum of
eigenvalues: tr(A) =

∑n
i=1 λi(A). Hint: First prove the cyclic

property of trace, that for any MN, tr(MN) = tr(NM) and
then apply this to A’s eigendecomposition
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Summary

• Many (most) datasets can be approximated via projection onto
a low-dimensional subspace.

• Find this subspace via a maximization problem:

max
orthonormal V

∥XV∥2F.

• Greedy solution via eigendecomposition of XTX.

• Columns of V are the top eigenvectors of XTX.

• Error of best low-rank approximation (compressibility of data) is
determined by the tail of XTX’s eigenvalue spectrum.
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