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- Problem Set 3 due next Friday 11/8 at 11:59pm.

- There is no class next Tuesday due to election day. But | will
hold my regular office hours from 2:30-3:30pm. Location TBD.

- Get any midterm regrade requests in by tomorrow.



Last Class:

- Finding an optimal orthogonal basis V € R¥** to minimize
[X — XW'||2 when the data does not exactly lie in a
low-dimensional subspace.

- Solution by taking the top k eigenvectors of X'X (this is
PCA/optimal low-rank approximation)

- Greedy optimization problem and connection to
Courant-Fischer principal.

This Class:

- Wrap up optimal low-rank approximation.

- Measuring the error of the low-rank approximation via
covariance matrix eigenvalues.

- General linear algebra review. ;



Best Fit Subspace

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € R¥** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

We can find V by solving the optimization problem:
R
argmin X XWT[[7 = argmax XV =[xV}
kR A
=1

orthonormal VERdxFk orthonormal VERYx
d-dimensional space

k-dim. subspace V

X1,...,%n € R% data points, X € R"*9: data matrix, V4, ..., V, € R% orthogo-
nal basis for subspace V. V e R9%k: matrix with columns V4, .. . , V.




Solution via Eigendecomposition

We can find the columns of V, v4, ..., V, greedily.

Vi = argmax HX\7H%
7 with [[v]J,=1

v, = arg max X113
Vwith [Jv][;=1, (V,V4)=0

Ve = arg max [[XV][3.
Fwith [[vl[,=1, (7,7)=0 Vj<k

Vi,...,Vy, are the top k eigenvectors of X'X by the Courant-Fischer
Principle.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . . ., V, € RY: orthogo-
nal basis for subspace V. V e R9%k: matrix with columns V4, .. ., V.




Low-Rank Approximation via Eigendecomposition

dxd

XX =% 5|V A A

6 d-dimensional space

k-dim. subspace V




Low-Rank Approximation via Eigendecomposition

Upshot: Letting V|, have columns i, ...,V corresponding to
the top k eigenvectors of the covariance matrix X'X, Vy, is the
orthogonal basis minimizing

X — XV, V.

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of X'X.

eigenvectors of XX, V,, € RY>k: matrix with columns ¥4, ..., V.

X1,..., % € RY data points, X € R">9: data matrix, v1,...,¥, € R top ]




Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

[IX = XViVEIIE = X[ tr(XTX) — [IXVEVE[I7 tr(VEXTXV)
d R
=D A(XTX) =) VXX,
i=1 =1

d k d
=S = YA = S A (xXx)

I=R+1

- Exercise: For any matrix A, [|A|Z = 37 (||| = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

X1,...,%n € R data points, X € R"™ % data matrix, V4,...,V, € R% top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.




Spectrum Analysis

Claim: The error in approximating X with the best rank k

approximation (projecting onto the top k eigenvectors of X'X) is:

dxd

d
IX = XVRVEIE = D A(X'X)

I=R+1

XX

A2

VT

error of optimal low rank
approximation

784 dimensional vec

G

- Choose k to balance accuracy/compression - often at an ‘elbow’.

[ Xi1,...,% € RY: data points, X € R"%%: data matrix, v, .

At Are ~EVTIVY A7~ AXR. mmatriv it o~Al e O =

eige

..,Vx € R% top ] 9



Spectrum Analysis

Plotting the spectrum of XX (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
Xi1,...,X, are to a low-dimensional subspace).

784 dimensional vectors 784 dimensional vectors

eigendecomposition
? Eigenvalue Rank

X,...,% € RY data points, X € R">9: data matrix, v4,...,¥%, € R top
eigenvectors of X'X, Vi, € RY*k: matrix with columns V4, . .. , V.

Eigenvalue
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Spectrum Analysis

784 dimensional vectors

eigendecomposition ' )

—

NEEA

Eigenvalue Rank

Exercises:

1. Show that the eigenvalues of XX are always positive. Hint:
Use that \; = VIXTXV,.

2. Show that for symmetric A, the trace is the sum of
eigenvalues: tr(A) = "7, A\(A). Hint: First prove the cyclic
property of trace, that for any MN, tr(MN) = tr(NM) and
then apply this to A’s eigendecomposition

n



- Many (most) datasets can be approximated via projection onto
a low-dimensional subspace.

- Find this subspace via a maximization problem:

max  ||XV]||Z.
orthonormal V

- Greedy solution via eigendecomposition of X'X.
- Columns of V are the top eigenvectors of X'X.

- Error of best low-rank approximation (compressibility of data) is
determined by the tail of X'X's eigenvalue spectrum.
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