COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2024. Lecture 15

- We released Problem Set 3 on Friday. It is due Friday 11/8 at 11:59pm.
- Midterm grade have been posted. The average was good around an 80%.
- Reach out to me if you are concerned about your midterm grade or your grade in the class overall.

- Linear algebra review.
- Concerns about grades.
- Participation grade.

Summary

Last Class:

- No-distortion embeddings for data lying in a k-dimensional subspace via an orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$ for that subspace.
- View as low-rank matrix factorization. Introduce concept of low-rank approximation.
- Idea of approximating a data matrix **X** with **XVV**^T when the data points lie close to the subspace spanned by **V**'s columns.

This Class:

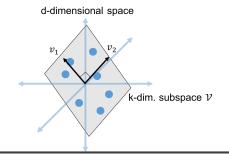
- Finding an optimal orthogonal basis V ∈ ℝ^{d×k} to minimize ||X − XVV^T||²_F when out data does not exactly lie in a low-dimensional subspace, via eigendecomposition.
- Measuring the error of the optimal low-rank approximation via covariance matrix eigenvalues.

Low-Rank Factorization

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}$ (implies rank(\mathbf{X}) $\leq k$)

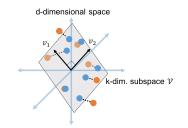
• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \ldots, \vec{x}_n$ onto the subspace \mathcal{V} .



Low-Rank Approximation

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}$



Note: XVV^{*T*} has rank *k*. It is a low-rank approximation of **X**.

$$XVV^{\mathsf{T}} = \underset{\mathsf{B with rows in }\mathcal{V}}{\arg\min} \|\mathsf{X} - \mathsf{B}\|_{F}^{2} = \sum_{i,j} (\mathsf{X}_{i,j} - \mathsf{B}_{i,j})^{2}$$

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T.$

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

- Letting $\mathbf{V}\mathbf{V}^T \vec{x}_i$, $\mathbf{V}\mathbf{V}^T \vec{x}_j$ be the *i*th and *j*th projected data points, $\|\mathbf{V}\mathbf{V}^T \vec{x}_i - \mathbf{V}\mathbf{V}^T \vec{x}_j\|_2 = \|\mathbf{V}^T \mathbf{V}\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \mathbf{V}\mathbf{V}^T \vec{x}_j\|_2 = \|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2$.
- I.e., we can use the rows of $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace ${\mathcal V}$ and correspondingly ${\textbf V}.$

Quick Exercise 1: Show that VV^T is idempotent. I.e., $(VV^T)(VV^T)\vec{y} = (VV^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Quick Exercise 2: Show that $VV^{T}(I - VV^{T}) = 0$ (the projection is orthogonal to its complement).

Pythagorean Theorem

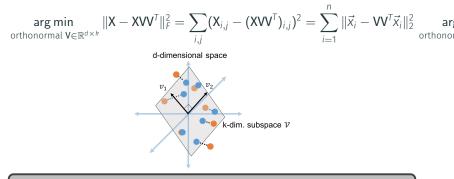
Pythagorean Theorem: For any orthonormal $\mathbf{V} \in \mathbb{R}^{d \times k}$ and any $\vec{y} \in \mathbb{R}^d$,

$$\|\vec{y}\|_{2}^{2} = \|(\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2} + \|\vec{y} - (\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2}.$$

Best Fit Subspace

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . **XV** gives optimal embedding of **X** in \mathcal{V} .

How do we find \mathcal{V} (equivilantly V)?



Solution via Eigendecomposition

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\operatorname{arg max}} \|\mathbf{X}\mathbf{V}\|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}^{T} \vec{x}_{i}\|_{2}^{2} = \sum_{j=1}^{k} \|\mathbf{X} \vec{v}_{j}\|_{2}^{2}$$

Surprisingly, can find the columns of V, $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2=1}{\arg \max} \|\mathbf{X}\vec{v}\|_2^2$$

$$\vec{V}_2 = \underset{\vec{v} \text{ with } \|v\|_2=1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\arg \max} \|\mathbf{X} \vec{v}\|_2^2$$

$$\vec{V}_{k} = \underset{\vec{v} \text{ with } \|v\|_{2}=1, \ \langle \vec{v}, \vec{v}_{j} \rangle = 0 \ \forall j < k}{\arg \max} \|\mathbf{X}\vec{v}\|_{2}^{2}.$$

 $\vec{v}_1, \ldots, \vec{v}_k$ are the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ by the Courant-Fischer Principle.

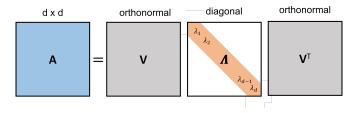
Eigenvector: $\vec{x} \in \mathbb{R}^d$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A}\vec{x} = \lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, **A** just 'stretches' x.
- If **A** is symmetric, can find *d* orthonormal eigenvectors $\vec{v}_1, \ldots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$AV = \begin{bmatrix} | & | & | & | \\ A\vec{v}_1 & A\vec{v}_2 & \cdots & A\vec{v}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{v}_1 & \lambda_2\vec{v}_2 & \cdots & \lambda\vec{v}_d \\ | & | & | & | \end{bmatrix} = V\Lambda$$

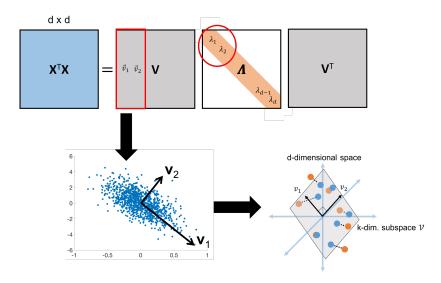
Yields eigendecomposition: $AVV^T = A = V\Lambda V^T$.

Review of Eigenvectors and Eigendecomposition



Typically order the eigenvectors in decreasing order: $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_d.$

Low-Rank Approximation via Eigendecomposition



Low-Rank Approximation via Eigendecomposition

Upshot: Letting V_k have columns $\vec{v}_1, \ldots, \vec{v}_k$ corresponding to the top *k* eigenvectors of the covariance matrix $X^T X$, V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2.$$

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand using eigenvalues of **X**^T**X**.