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- We released Problem Set 3 on Friday. It is due Friday 11/8 at
11:59pm.

- Midterm grade have been posted. The average was good -
around an 80%.

- Reach out to me if you are concerned about your midterm
grade or your grade in the class overall.



Quiz Questions/Concerns

- Linear algebra review.
- Concerns about grades.

- Participation grade.



Last Class:

- No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V € R?*® for that subspace.

- View as low-rank matrix factorization. Introduce concept of
low-rank approximation.

- ldea of approximating a data matrix X with X¥V" when the data
points lie close to the subspace spanned by V's columns.

This Class:

- Finding an optimal orthogonal basis V € RY** to minimize
[X — XW'||2 when out data does not exactly lie in a
low-dimensional subspace, via eigendecomposition.

- Measuring the error of the optimal low-rank approximation via
covariance matrix eigenvalues.



Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R4k the data matrix can be written as

X = XW/' (implies rank(X) < k)

- W/ is a projection matrix, which projects the rows of X (the data
points X, ..., X, onto the subspace V.

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., V, € R%: orthogo-
nal basis for subspace V. V e R9%k: matrix with columns ¥4, .. . , V. 5




Low-Rank Approximation

Claim: If X;, ..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9*® the data matrix can be approximated as:

X ~ XWW'

d-dimensional space

k-dim. subspace V

Note: XVV has rank k. It is a low-rank approximation of X.

XWT = argmin [IX—B[Z = (X;; — By)>.

B with rows in V i

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., V, € RY: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V.




Low-Rank Approximation

So Far: If X;,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R?*® the data matrix can be approximated as:
X~ XW',

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

- Letting W'X;, W'X; be the i and j" projected data points,
WX — WIX[| = [[VIWTX: — VIWX |15 = [VTX; — VT2

- l.e, we can use the rows of XV € R"** as a compressed
approximate data set.

Key question is how to find the subspace V and correspondingly V.

nal basis for subspace V. V € RYXk: matrix with columns ¥, .. . , V.

X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., v, € R%: orthogo- ]
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Properties of Projection Matrices

Quick Exercise 1: Show that W' is idempotent. l.e,,
(W) (WT)y = (WT)y for any y € RY.

Quick Exercise 2: Show that W'(I — W) = 0 ( the projection is
orthogonal to its complement).



Pythagorean Theorem

Pythagorean Theorem: For any orthonormal V € RY*% and any
yeRr,
1715 = W + (1Y — (W3-



Best Fit Subspace

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € R¥** the data matrix can be approximated as

XVWV'. XV gives optimal embedding of X in V.
How do we find V (equivilantly V)?

argmin X = XWT[I2 =" (X;; — (XWT);)? an,fvv X3 ar

orthonormal VERAxk i orthono

d-dimensional space

k-dim. subspace V

X1,...,%n € R%: data points, X € R"*9: data matrix, V4, ..., V, € R% orthogo-
nal basis for subspace V. V e R9*k: matrix with columns V4, .. ., V. 10




Solution via Eigendecomposition

V minimizing ||X — XV is given by:
n R
argmax [XVIF =3 IVEIR = 3 X3
orthonormal VER?xF i=1 j=1
Surprisingly, can find the columns of V, Vi, ..., V,, greedily.

Vi = argmax ||XV|}
v with ||v]|,=1

V) = arg max HX\_/'H%
Vwith [|v]2=1, (V,V1)=0

Vp = arg max [|XV|3.
Fwith [|[v],=1, (7,7)=0 Vj<k
Vi,...,V, are the top k eigenvectors of X'X by the Courant-Fischer
Principle

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V e R4k matrix with columns ¥, .. . , V. 1




Review of Eigenvectors and Eigendecomposition

Eigenvector: X € RY is an eigenvector of a matrix A € R9x9 if

AX = XX for some scalar X (the eigenvalue corresponding to X)

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
Vi,...,Vq. Let V e R9%9 have these vectors as columns.

[ N | | |
AV = [AV; Al -+ AVg| = | MV A --- Aig| =VA

Yields eigendecomposition: AW’ = A = VAV,
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Review of Eigenvectors and Eigendecomposition

dxd orthonormal diagonal orthonormal

A
22

A = \ A \

Aa-1
Aa

Typically order the eigenvectors in decreasing order:
M> N> > A\
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Low-Rank Approximation via Eigendecomposition

dxd

XX =% 5|V A A

6 d-dimensional space

k-dim. subspace V




Low-Rank Approximation via Eigendecomposition

Upshot: Letting V|, have columns i, ...,V corresponding to
the top k eigenvectors of the covariance matrix X'X, Vy, is the
orthogonal basis minimizing

X — XV, V.

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of X'X.

eigenvectors of XX, V,, € RY>k: matrix with columns ¥4, ..., V.

X1,..., % € RY data points, X € R">9: data matrix, v1,...,¥, € R top ]
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