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Logistics

• We released Problem Set 3 on Friday. It is due Friday 11/8 at
11:59pm.

• Midterm grade have been posted. The average was good –
around an 80%.

• Reach out to me if you are concerned about your midterm
grade or your grade in the class overall.
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Quiz Questions/Concerns

• Linear algebra review.

• Concerns about grades.

• Participation grade.
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Summary

Last Class:

• No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V ∈ Rd×k for that subspace.

• View as low-rank matrix factorization. Introduce concept of
low-rank approximation.

• Idea of approximating a data matrix X with XVVT when the data
points lie close to the subspace spanned by V’s columns.

This Class:

• Finding an optimal orthogonal basis V ∈ Rd×k to minimize
∥X− XVVT∥2F when out data does not exactly lie in a
low-dimensional subspace, via eigendecomposition.

• Measuring the error of the optimal low-rank approximation via
covariance matrix eigenvalues.
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Low-Rank Factorization

Claim: If x⃗1, . . . , x⃗n lie in a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be written as

X = XVVT (implies rank(X) ≤ k)

• VVT is a projection matrix, which projects the rows of X (the data
points x⃗1, . . . , x⃗n onto the subspace V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 5



Low-Rank Approximation

Claim: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT

Note: XVVT has rank k. It is a low-rank approximation of X.

XVVT = argmin
B with rows in V

∥X− B∥2F =
∑
i,j

(Xi,j − Bi,j)
2.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 6



Low-Rank Approximation

So Far: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT.

This is the closest approximation to X with rows in V (i.e., in the
column span of V).

• Letting VVTx⃗i, VVTx⃗j be the ith and jth projected data points,

∥VVTx⃗i − VVTx⃗j∥2 = ∥VTVVTx⃗i − VTVVTx⃗j∥2. = ∥VTx⃗i − VTx⃗j∥2.

• I.e., we can use the rows of XV ∈ Rn×k as a compressed
approximate data set.

Key question is how to find the subspace V and correspondingly V.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 7



Properties of Projection Matrices

Quick Exercise 1 : Show that VVT is idempotent. I.e.,
(VVT)(VVT)⃗y = (VVT)⃗y for any y⃗ ∈ Rd.

Quick Exercise 2: Show that VVT(I− VVT) = 0 ( the projection is
orthogonal to its complement).
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Pythagorean Theorem

Pythagorean Theorem: For any orthonormal V ∈ Rd×k and any
y⃗ ∈ Rd,

∥⃗y∥22 = ∥(VVT)⃗y∥22 + ∥⃗y− (VVT)⃗y∥22.
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Best Fit Subspace

If x⃗1, . . . , x⃗n are close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as
XVVT. XV gives optimal embedding of X in V .

How do we find V (equivilantly V)?

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F =
∑
i,j

(Xi,j − (XVVT)i,j)
2 =

n∑
i=1

∥⃗xi − VVTx⃗i∥22 argmin
orthonormal V∈Rd×k

∥X∥2F − ∥XVVT∥2F =
n∑
i=1

∥⃗xi∥22 − ∥VVTx⃗i∥22 argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
n∑
i=1

∥VVTx⃗i∥22

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 10



Solution via Eigendecomposition

V minimizing ∥X− XVVT∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XV∥2F =
n∑
i=1

∥VTx⃗i∥22 =
k∑

j=1

∥X⃗vj∥22

Surprisingly, can find the columns of V, v⃗1, . . . , v⃗k greedily.

v⃗1 = argmax
v⃗ with ∥v∥2=1

∥X⃗v∥22

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

∥X⃗v∥22

. . .
v⃗k = argmax

v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<k
∥X⃗v∥22.

v⃗1, . . . , v⃗k are the top k eigenvectors of XTX by the Courant-Fischer
Principle.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 11



Review of Eigenvectors and Eigendecomposition

Eigenvector: x⃗ ∈ Rd is an eigenvector of a matrix A ∈ Rd×d if
A⃗x = λ⃗x for some scalar λ (the eigenvalue corresponding to x⃗).

• That is, A just ‘stretches’ x.
• If A is symmetric, can find d orthonormal eigenvectors
v⃗1, . . . , v⃗d. Let V ∈ Rd×d have these vectors as columns.

AV =

 | | | |
A⃗v1 A⃗v2 · · · A⃗vd
| | | |

 =

 | | | |
λ1⃗v1 λ2v⃗2 · · · λ⃗vd
| | | |

 = VΛ

Yields eigendecomposition: AVVT = A = VΛVT.
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Review of Eigenvectors and Eigendecomposition

Typically order the eigenvectors in decreasing order:
λ1 ≥ λ2 ≥ . . . ≥ λd.
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Low-Rank Approximation via Eigendecomposition
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Low-Rank Approximation via Eigendecomposition

Upshot: Letting Vk have columns v⃗1, . . . , v⃗k corresponding to
the top k eigenvectors of the covariance matrix XTX, Vk is the
orthogonal basis minimizing

∥X− XVkVTk∥2F.

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of XTX.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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