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- We released Problem Set 3 on Friday. It is due Friday 11/8 at
11:59pm.

- Midterm grade have been posted. The average was good -
around an 80%.

- Reach out to me if you are concerned about your midterm
grade or your grade in the class overall.



Quiz Questions/Concerns

]~ Linear algebra review. ~ 7Y 30 6‘8

- Concerns about grades.

- Participation grade.
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Last Class:
- No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V € R?* for that subspace.

- View as low-rank matrix factorization. Introduce cgncept of
low-rank approximation. Y = CVT z \X\i\/
. . . . -
- Idea of approximating a data matrix X with XWW" when the data
—_—
points lie close to the subspace spanned by V's columns.
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Last Class:

- No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V € R?*® for that subspace.

- View as low-rank matrix factorization. Introduce concept of
low-rank approximation.

- Idea of approximating a data matrix X with XWW" when the data
points lie close to the subspace spanned by V's columns.

This Class:

- Finding an optimal orthogonal basis V & RI*F to minimize
Hz(/— MH% when out data does not exactly liein a
low-dimensional subspace, via eigendecomposition.

- Measuring the error of the optimal low-rank approximation via
covariance matrix eigenvalues.



Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace V with
ogthonormal baS|s V € RI*k the data matrix can be written as

l | T/ . T ./()-E.
LNy X = XW' (implies rank(X) < k) \/\Im)‘fx) Yo 4\),};»\.
\ l | W is a projection matrix, which projects the rows of X (the data
points X, ..., X, onto the subspace V.

d-dimensional space

k-dim. subspace V

X1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V. 5




Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:
X ~ X'

—_—

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V.




Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:

X ~ XV’

d-dimensional space

k-dim. subspace V
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Note: XVVT has rank k. It is a low-rank approximation of X.
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X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V.




Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € Rk the data matrix can be apAorommaﬁted ai*\

U%j AN Q} d-dimens:nal S:ZVT ,i[\}\/J l
3 CQ]TJ(:\]\]}' W]

N
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g;\\‘\l k-dim. subspace V

| .' T T T =
Vo =Y (xud) "= ) K =W
Noté: XVV' has rank k. It is a low-rank approximation of X.

XW!' = argmin X — B[z =) (X — Bj)".

B Wit% i
X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V. .




Low-Rank Approximation

So Far: If Xi,..., Xy lie close ta a k-dimensional subspace V with

orthonormal basis V € R9** the data matrix can be approximated as:

~ T
X XW.

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

Xi1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, ..., V. 7




Low-Rank Approximation

So Far: If X4,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:

X &~ X',
This is the closest approximation to X with rows in V (i.e., in the
column span of V).
. LettTg‘ WX, W'X; be the i and ji" projected dat? points,
WX, vax,H2 = VWX = VIW'X |5, = [[VTX; — VX ..
@4
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Xi1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, ..., V. 7




Low-Rank Approximation

So Far: If X4,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:
X &~ X',

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

- Letting W'X;, W'X; be the it" and ji" projected data points,
WX — WIXi|, = VWX — VIWTX |5, = [[VTX; — VX,

- l.e, we can use the rows of XV € R"** as a compressed
approximate data set.

Xi1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, ..., V. 7




Low-Rank Approximation

So Far: If X4,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:

X ~ XV,
This is the closest approximation to X with rows in V (i.e,, in the
column span of V). “\ITX ,\/T3 h % \\X*jﬂ

- Letting W'X;, W'X; be the it" and ji" projected data points,

W', vax,H2 IVWV'E = VW5 . = VX, = VT o,
. R
l.e., we can use the rows ofxg/e]R”X as aéuco pressed zmnofaﬁd
approximate data set. | X1 =% n ><\N —n XV
UY‘\(SN\K.]

Key question is how to find the subspace V and correspondirfgty V.

Xi1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, ..., V. 7




Properties of Projection Matrices

Quick Exercise 1: Show that W' is idempotent. l.e,
(WT)(Wy = (va)y for any y € RY.

vV \/\/Té = ! 3 1< vamu\ o \/\/ IM{

T
Quick Exercise 2: Show that W'(I — W') = 0 ( the projection is

orthogonal to its complement).‘]—/
WhT - W W
T-W' =0
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Pythagorean Theorem

Pythagorean Theorem: For any orthonormal V e R9** and any
VgRi
[l ||)/”2 = H(VVT)sz + Hy (W2 |\
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Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

Xi,...,% € RY: data points, X € R"%?: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V € R4*k: matrix with columns v, . .., V.




Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?

Xi,...,% € RY: data points, X € R"%?: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V € R4*k: matrix with columns v, . .., V.




Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?

argmin X = XWTII2 =" (X, — (XW);)? an,fvv 1112

dxk —
orthonormal VER* " i

d-dimensional space

X X!
k-dim. subspace V
Xi,...,% € RY: data points, X € R"%?: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V € R4*k: matrix with columns v, . .., V. 10




Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as 1
XVV'. XV gives optimal embedding of X in V. |\><‘,”2l - \\)\(\NYK'.“z \

T
How do we find V (equivilantly V)? f I xh

n
argmin [[X|[f = [XWVT[|f = Z(II%II% — [Wil3
=1

orthonormal VERY %k

d-dimensional space

k-dim. subspace V

X1,...,% € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns V4, ... , V.




Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

How do we find V{equw\antlyv) T
o xwliy 1% Wl
. \} ! .
argmin IX[IF = [IXVVTI[E =D " [I%i]15 — HM%
orthonormal VERYX _— i=1
‘d-diﬁnsional space \/ S \iL
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X1,...,% € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R%: orthogo-

nal basis for subspace V. V e R4><*: matrix with columns V4, ... , V.




Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?

ot 4
LGN \\‘f\'WV nF - arg max [IXVVT||Z = Z VWV'X:||2

orthonormal VERIx* i
/ /_/
=  d-dimensional space

k-dim. subspace V

X1,...,% € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns V4, ... , V.




Solution via Eigendecomposition

V minimizing ||X — XW'||2 is given by:
R

arg max ||xqu—ZHv 1B =3 IX [

orthonormal VER? = =1
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X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 11




Solution via Eigendecomposition

V minimizing ||X — XW'||2 is given by:
. A

n
arg max ||XVH% = Z HVT)?iH%
=1

orthonormal VERI Xk

Surprisingly, can find the columns of V, V4, ..., V, greedily.

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 11




Solution via Eigendecomposition

V minimizing ||X — XW'||2 is given by:
n R
argmax XV =Y [[VIXi[3 = > [IXV5
orthonormal VERY Xk ; e }21: ‘—L’z

Surprisingly, can find the columns of V, V4,. .., V, greedily.

Vi = argmax ||XV|]3
7 with [|v]|,=1

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 11




Solution via Eigendecomposition

V minimizing ||X — XW'||2 is given by:

n 3
2 T3 |12 7112
arg max [IXV||z = Z IViXill2 = Z [1XVi[5

orthonormal VERI Xk =1 j=1
Surprisingly, can find the columns of V, V4,. .., V, greedily.

Vi = argmax [XV]3
7 with [|v]=1
v = arg max 1XV]13
Vwith ||v][;=1, (V,7h)=0
\]\ Vi
V.
X1,..., X € R% data points, X € R1*%: data matrix, Vs, . . ., V, € RY: orthogo-

nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 11
k




Solution via Eigendecomposition

ol

b

V minimizing ||X — XW'||2 is given by:

n 3 )(
argmax [IXV][E =D VX[ =D IXV3 [
i=1 j:l/‘

orthonormal VERI Xk

Surprisingly, can find the columns of V, V4,. .., V, greedily.
. L St
V= argmax |XV|2 * V ROEN

7 with [|v][,=1

1
= T
V) = arg max IXVI3 = vg XX\

Vwith ||v]|;=1, (V,V3)=0

Vo = arg max XV A%V

7 with [[v],=1, (V,7)=0 Vj<k™——

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 11




Solution via Eigendecomposition

V minimizing ||X — XWV||2 is given by:
\_/ k

n
argmax_[XV|E=) IVXIZ=D X2
i=1

orthonormal VERIxk =1

Surprisingly, can find the columns of V, V4,. .., V, greedily.

S 7

s 8 |
o X7

/ v 7 with \?vﬁ\%:r?,az(v,vw:o X1

1 = argmax ||X\7||%
7 with [|v]l,=1

Ve = arg max (| XV|3.
Fwith [VIl,=1, (7,7)=0 Vj<k

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V. 11




Review of Eigenvectors and Eigendecomposition

T
WO XTFJ )(’(
Eigenvector: X € R? is an eigenvector of a matrix A € R9xd if
AX = \X for some scalar A (the eigenvalue corresponding to X).
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JAx

12



Review of Eigenvectors and Eigendecomposition

Eigenvector: X € RY is an eigenvector of a matrix A € R9*? if

AX = \X for some scalar A (the eigenvalue corresponding to X)

- Thatis, A just ‘stretches’ x.

12



Review of Eigenvectors and Eigendecomposition

T
()T XX
Eigenvector: X € RY is an eigenvector of a matrix A € R9xd if

—

AX = \X for some scalar A (the eigenvalue corresponding to X)

- Thatis, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
Vi,...,Vq. Let V e R9%9 have these vectors as columns.

12



Eigenvector: X € RY is an eigenvector of a matrix A € R9xd if
AX = \X for some scalar A (the eigenvalue corresponding to X)

- Thatis, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors

Vi,...,Vq. Let V e R9%9 have these vectors as columns.

>\|'\/| AVL -~-)\4\/;_

oo
AV = |AV; AV, --- AVy
o

Review of Eigenvectors and Eigendecomposition
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Review of Eigenvectors and Eigendecomposition

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if
AX = \X for some scalar X (the eigenvalue corresponding to X).

- Thatis, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
Vi,...,Vq. Let V e R9%9 have these vectors as columns.

I | I
AV = A\71 A\72 A\7d = /\1\71 )\2\72 )‘yd
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Review of Eigenvectors and Eigendecomposition

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if
AX = \X for some scalar X (the eigenvalue corresponding to X).

- Thatis, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
Vi,...,Vq. Let V e R9%9 have these vectors as columns.

[ N B | | I
AV = [AV; AV - AVy| = [NV XV -+ AVg| =VA

12



Review of Eigenvectors and Eigendecomposition

Eigenvector: X € RY is an eigenvector of a matrix A € R9*? if

AX = \X for some scalar A (the eigenvalue corresponding to X)

- Thatis, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
Vi,...,Vq. Let V e R9%9 have these vectors as columns.

—

AV = [AV; AV - AVy| = [NV XV -+ AVg| =VA
[ I B | | I

Yields eigendecomposition: AW = A = VAV
—_
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Review of Eigenvectors and Eigendecomposition

dxd orthonormal diagonal orthonormal
A
‘ .\ A2
A =V - AVAd \/l A i

]

Aa

Typically order the eigenvectors in decreasing order:
A > A > e > g
\__,_/\/\/
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Low-Rank Approximation via Eigendecomposition

dxd

XX =|n#|V A A

Ad-1
a

6 d-dimensional space

k-dim. subspace V

14



Low-Rank Approximation via Eigendecomposition

Upshot: Letting Vi, have columns Vi, ..., Vi corresponding to
the top k eigenvectors of the covariance matrix X'X, V,, is the

. . . . . R -
orthogonal basis minimizing

X — XV VE 7.

L@@m/\ lo Tk 4ppritien e

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X7X, Vi, € R?%k: matrix with columns ¥, . . ., V.

15



Low-Rank Approximation via Eigendecomposition

Upshot: Letting Vi, have columns Vi, ..., Vi corresponding to
the top k eigenvectors of the covariance matrix X'X, V,, is the
orthogonal basis minimizing

X — XV VE 7.

This is principal component analysis (PCA).

X,..., % € RY data points, X € R"*%: data matrix, ¥,...,V, € R% top
eigenvectors of X7X, Vi, € R?%k: matrix with columns ¥, . . ., V.

15



Low-Rank Approximation via Eigendecomposition

Upshot: Letting Vi, have columns Vi, ..., Vi corresponding to
the top k eigenvectors of the covariance matrix X'X, V,, is the

orthogonal basis minimizing
X — XV VE 7.

This is principal component analysis (PCA).

How accurate is this low-rank approximation?

eigenvectors of X'X, V, € R?*k: matrix with columns ¥, . .

X,...,% € RY data points, X € R"9: data matrix, v, ..

.,V € RY: top

-y Vg
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Low-Rank Approximation via Eigendecomposition

Upshot: Letting Vi, have columns Vi, ..., Vi corresponding to
the top k eigenvectors of the covariance matrix X'X, V,, is the
orthogonal basis minimizing

X — XV VE 7.

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of X’X.

X,..., % € RY data points, X € R"*%: data matrix, ¥,...,V, € R% top
eigenvectors of X7X, Vi, € R?%k: matrix with columns ¥, . . ., V.

15



