COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2024. Lecture 14

Logistics

- · Midterms and Problem Set 2 are being graded now.
- Problem Set 3 will be released shortly, likely due 11/8.

Summary

Last Few Classes: The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension d to $O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and preserve all pairwise distances up to $1 \pm \epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)
- Proved via the distributional JL-Lemma which shows that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix, $\Pi \vec{y}_2 \approx \|\vec{y}\|$ for any y with high probability.
- Proof of distributional JL via linearity of expectation, linearity of variance, stability of the Gaussian distribution, and an exponential concentration bound for Chi-Squared random variables.

Summary

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce d-dimesional data points to a smaller dimension m.
- · Like JL, compression is linear by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- Can give better compression than random projection (although not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis, column/row span, eigenvectors, etc.

Embedding with Assumptions

Assume that data points $\vec{x}_1,\dots,\vec{x}_n$ lie in any k-dimensional subspace $\mathcal V$ of $\mathbb R^d$ -dimensional space d-dimensional space



Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_j :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

• $V^T \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_1, \dots, \vec{x}_n$ into k dimensions with no distortion.

Dot Product Transformation

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_i, \vec{x}_j \in \mathcal{V}$:

$$\|\mathbf{V}^{\mathsf{T}}\vec{x}_{i} - \mathbf{V}^{\mathsf{T}}\vec{x}_{j}\|_{2} = \|\vec{x}_{i} - \vec{x}_{j}\|_{2}.$$

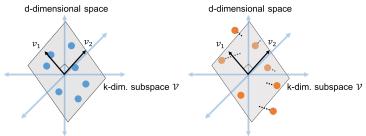
Dot Product Transformation

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_i, \vec{x}_j \in \mathcal{V}$:

$$\|\mathbf{V}^{\mathsf{T}}\vec{x}_{i} - \mathbf{V}^{\mathsf{T}}\vec{x}_{j}\|_{2} = \|\vec{x}_{i} - \vec{x}_{j}\|_{2}.$$

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find \mathcal{V} and \mathbf{V} ?
- · How good is the embedding?

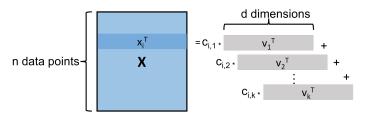
Low-Rank Factorization

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write \vec{x}_i as:

$$\vec{x}_i = V\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + c_{i,2} \cdot \vec{v}_2 + \ldots + c_{i,k} \cdot \vec{v}_k.$$

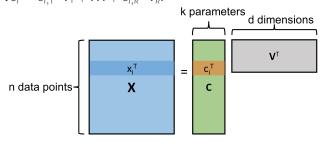
• So $\vec{v}_1, \dots, \vec{v}_k$ span the rows of **X** and thus rank(**X**) $\leq k$.



 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Every data point \vec{x}_i (row of X) can be written as $\vec{x}_i = V\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k$.

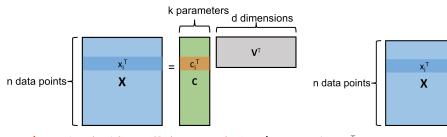


- X can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of $V \implies$ the columns of X are spanned by k vectors: the columns of C.

 $\vec{x}_1, \dots, \vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Low-Rank Factorization

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as $X = CV^T$.



Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^TV = I$.

$$\cdot X = CV^T \implies XV = CV^TV \implies XV = C$$

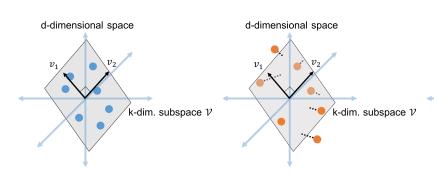
 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Projection View

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = CV^TXVV^T$$
.

• $\mathbf{V}\mathbf{V}^T$ is a projection matrix, which projects vectors onto the subspace \mathcal{V} .



Low-Rank Approximation

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T$$



Note: XVV^T has rank k. It is a low-rank approximation of X.

$$\mathbf{XVV^T} = \mathop{\arg\min}_{\mathbf{B} \text{ with rows in } \mathcal{V}} \|\mathbf{X} - \mathbf{B}\|_{\mathit{F}}^2 = \sum_{i,j} (\mathbf{X}_{i,j} - \mathbf{B}_{i,j})^2.$$

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Low-Rank Approximation

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^T$$
.

This is the closest approximation to ${\bf X}$ with rows in ${\cal V}$ (i.e., in the column span of ${\bf V}$).

- Letting $(XVV^T)_i$, $(XVV^T)_j$ be the i^{th} and j^{th} projected data points, $\|(XVV^T)_i (XVV^T)_j\|_2 = \|[(XV)_i (XV)_j]V^T\|_2 = \|[(XV)_i (XV)_j]\|_2.$
- · Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace ${\cal V}$ and correspondingly ${f V}$.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Properties of Projection Matrices

Quick Exercise: Show that VV^T is idempotent. I.e., $(VV^T)(VV^T)\vec{y} = (VV^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Why does this make sense intuitively?

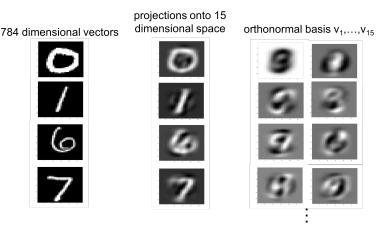
Less Quick Exercise: (Pythagorean Theorem) Show that:

$$\|\vec{y}\|_{2}^{2} = \|(\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}\|_{2}^{2} + \|\vec{y} - (\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}\|_{2}^{2}.$$

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

 The rows of X can be approximately reconstructed from a basis of k vectors.



Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

bedrooms

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
home 1	2	2	1800	2	200,000	195,000	home 1
home 2	4	2.5	2700	1	300,000	310,000	home 2
•		•					
•		•			•	•	
home n	5	3.5	3600	3	450,000	450,000	home n