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- Midterms and Problem Set 2 are being graded now.
- Problem Set 3 will be released shortly, likely due 11/8.



Last Few Classes: The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension d to O ('°g”>

62
dimensions and preserve all pairwise distances up to 1+ e.

- Compression is linear via multiplication with a random, data
oblivious, matrix (linear compression)

- Proved via the distributional JL-Lemma which shows that if
N c R™*9 is a random matrix, My, ~ ||| for any y with high
probability.

- Proof of distributional JL via linearity of expectation, linearity of
variance, stability of the Gaussian distribution, and an
exponential concentration bound for Chi-Squared random
variables.



Next Few Classes: Low-rank approximation, the SVD, and principal
component analysis (PCA).

- Reduce d-dimesional data points to a smaller dimension m.

- Like JL, compression is linear — by applying a matrix.

- Chose this matrix carefully, taking into account structure of the
dataset.

- Can give better compression than random projection (although
not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis,
column/row span, eigenvectors, etc.



Embedding with Assumptions

Assume that data points Xy, ..., X, lie in any k-dimensional subspace
V of RY.

d-dimensional space d-dimensional space

k-dim. subspace V k-dim. subspace V

Claim: Let Vi, ..., Vi be an orthonormal basis for V and V € R9*k be
the matrix with these vectors as its columns. For all X;, X;:

IVTX; = VX2 = 1K — Xil|2.

- VT € R**4 is a linear embedding of Xi, ..., X, into k dimensions
with no distortion.



Dot Product Transformation

Claim: Let Vi, ..., V, be an orthonormal basis for V and V € R9*k be
the matrix with these vectors as its columns. For all X;,X; € V:
IVIX; = VTX%i[l2 = (1% — Kill2.



Dot Product Transformation

Claim: Let Vi, ..., V, be an orthonormal basis for V and V € R9*k be
the matrix with these vectors as its columns. For all X;,X; € V:
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Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points X, ..., X,

lie close to any k-dimensional subspace V of RY.
d-dimensional space d-dimensional space

k-dim. subspace V k-dim. subspace V

Letting Vi, ..., Vi, be an orthonormal basis for V and V € R9** be the
matrix with these vectors as its columns, V'X; € R* is still a good
embedding for x; € R?. The key idea behind low-rank approximation

and principal component analysis (PCA).
- How do we find V and V?

- How good is the embedding? 8



Low-Rank Factorization

Claim: X;,...,X, lie in a k-dimensional subspace V < the data
matrix X € R"™9 has rank < k.

- Letting Vi, ...,V be an orthonormal basis for V, can write X; as:

Xi =VC =Cia-Vi+Cp-Vat...+Ci Ve

- S0 Vy,..., Vg span the rows of X and thus rank(X) < k.

r d dimensions

i -
X =Cjq+ A +

n data points— X G2+ vy +

Ciy* va

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., V, € R%: orthogo-
nal basis for subspace V. V. € R4*k: matrix with columns ¥4, . . ., V.




Claim: X;,...,X, € R? lie in a k-dimensional subspace V < the data
matrix X € R"™9 has rank < k.

- Every data point X; (row of X) can be written as
)_(,':VE,':C,'J '\71+---+Ci,ﬁe'\7fe~
k parameters

d dimensions
1—1_\ ——

VT

X - o

n data points X C

- X can be represented by (n + d) - k parameters vs. n - d.

- The rows of X are spanned by k vectors: the columns of V —
the columns of X are spanned by k vectors: the columns of C.

X1,...,%n: data points (in R?), V: k-dimensional subspace of RY, v, ..., ¥, €
RY: orthogonal basis for V. V e R9><k: matrix with columns V4, ..., V.
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Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace with orthonormal
basis V € R¥*k the data matrix can be written as X = CV'.

k parameters

d dimensions
{_Jl_\ —

\i

X
n data points X C n data points X

Exercise: What is this coefficient matrix C? Hint: Use that VIV = I.

cX=CV = XV=CV'V = XV=_C

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € RY: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V.

n



Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R?**, the data matrix can be written as
X = CVIXW'.
- W/ is a projection matrix, which projects vectors onto the
subspace V.
d-dimensional space d-dimensional space d-
vy V2
0 <

k-dim. subspace V k-dim. subspace V
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Low-Rank Approximation

Claim: If X;, ..., X, lie close to a k-dimensional subspace V with

orthonormal basis V € R9*® the data matrix can be approximated as:

X ~ XWW'

d-dimensional space

k-dim. subspace V

Note: XVV has rank k. It is a low-rank approximation of X.

XWT = argmin [IX—B[Z = (X;; — By)>.

B with rows in V i

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., V, € RY: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V.
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Low-Rank Approximation

So Far: If X;,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R?*® the data matrix can be approximated as:
X~ XW',

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

- Letting (XWW');, (XW); be the it" and i projected data points,
I(XWT); — (XWT)jll2 = [I(XV); — (XV);IVT [l = [[TXV); = (XV)i] .-

- Can use XV € R™** as a compressed approximate data set.

Key question is how to find the subspace V and correspondingly V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € RY: orthogo-
nal basis for subspace V. V € R9*k: matrix with columns ¥, .. . , V.
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Properties of Projection Matrices

Quick Exercise: Show that W/ is idempotent. le,,
(W) (WT)y = (WT)y for any y € RY.

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show that:

7112 = WY + 1Y = (W2
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A Step Back: Why Low-Rank Approximation?

Question: Why might we expect X, ..., X, € RY to lie close to a
k-dimensional subspace?

- The rows of X can be approximately reconstructed from a basis
of k vectors.

projections onto 15
784 dimensional vectors ~ dimensional space




Dual View of Low-Rank Approximation

Question: Why might we expect Xi, ..., X, € R? to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms| bathrooms| sq.ft.|floors| list price | sale price bedrooms
home 1 2 2 1800 2 | 200,000 | 195,000 home 1
home 2 4 25 2700 | 1 | 300,000 | 310,000 home 2
17
home n 5 35 (3600 3 | 450,000 | 450,000 home n




