COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.

Lecture 14

- Midterms and Problem Set 2 are being graded now.
- Problem Set 3 will be released shortly, likely due 11/8.

Summary

Last Few Classes: The Johnson-Lindenstrauss Lemma

- Reduce *n* data points in any dimension *d* to $O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and preserve all pairwise distances up to $1 \pm \epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression) $\int \pi \int x \mu$
- Proved via the distributional JL-Lemma which shows that if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is a random matrix, $\mathbf{\Pi} \vec{y}_2 \approx \|\vec{y}\|$ for any y with high probability.
- Proof of distributional JL via linearity of expectation, linearity of variance, stability of the Gaussian distribution, and an exponential concentration bound for Chi-Squared random variables.

Summary

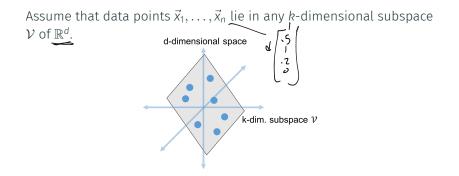
Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA). $\int \pi \int \int dr dr$

- Reduce *d*-dimesional data points to a smaller dimension *m*.
- Like JL, compression is linear by applying a matrix.

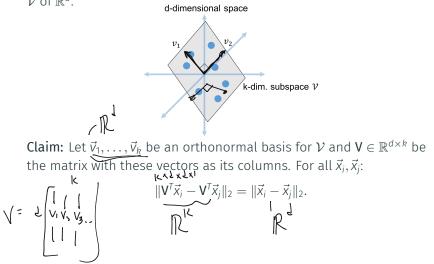
• Chose this matrix carefully, taking into account structure of the dataset.

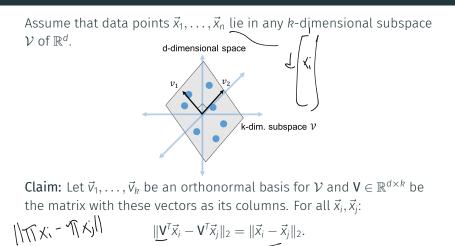
• Can give better compression than random projection (although not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis, column/row span, eigenvectors, etc.



Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie in any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .





• $V^{\underline{r}} \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x_1, \ldots, \vec{x_n}}$ into k dimensions with no distortion.

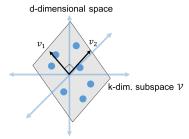
Dot Product Transformation

Claim: Let
$$\vec{v}_1, \ldots, \vec{v}_k$$
 be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be
the matrix with these vectors as its columns. For all $\vec{x}_i, \vec{x}_j \in \mathcal{V}$: $\|y\|_{L^{-1}} = \{\vec{x}_i, \vec{x}_j\} = \|\vec{x}_i - \vec{x}_j\|_{L^{-1}}$
 $\vec{v}_i = \vec{v}_i + \vec{v}_i$

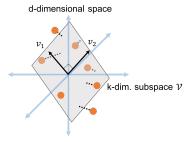
Dot Product Transformation

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_i, \vec{x}_i \in \mathcal{V}$: $\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_i\|_2 = \|\vec{x}_i - \vec{x}_i\|_2.$ $\|y\|_{2} = \sqrt{\frac{2}{5}} y(i)^{2}$ $\|y\|_{2}^{2} = \frac{2}{5} y(i)^{2} = \langle y, y \rangle$ $(\frac{2}{5} y(i) \cdot y(i) = \frac{2}{5} y(i)^{2}$ $\left[\begin{array}{c} \overline{0} \\ \overline{0} \\ \overline{0} \\ \overline{1} \\$

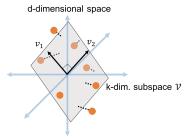
Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

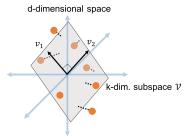


Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .



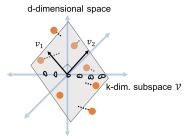
Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\underline{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$.

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

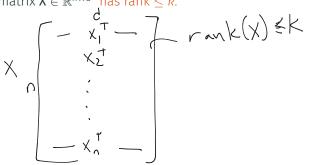
Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find ${\mathcal V}$ and V?
- How good is the embedding?

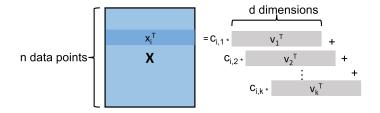
Claim: $\vec{x_1}, \dots, \vec{x_n}$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.



Claim: $\vec{x_1}, \dots, \vec{x_n}$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write \vec{x}_i as:

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + c_{i,2}\cdot\vec{v}_2 + \ldots + c_{i,k}\cdot\vec{v}_k.$$

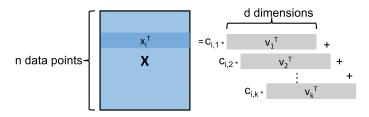


Claim: $\vec{x_1}, \dots, \vec{x_n}$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write \vec{x}_i as:

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + c_{i,2}\cdot\vec{v}_2 + \ldots + c_{i,k}\cdot\vec{v}_k.$$

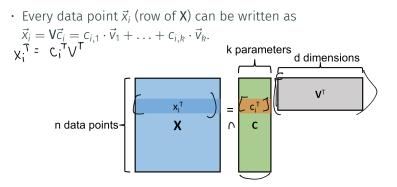
• So $\vec{v}_1, \ldots, \vec{v}_k$ span the rows of **X** and thus rank(**X**) $\leq k$.



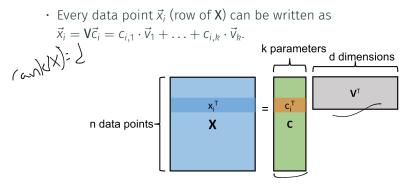
Claim: $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Every data point \vec{x}_i (row of X) can be written as $\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k.$

Claim: $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

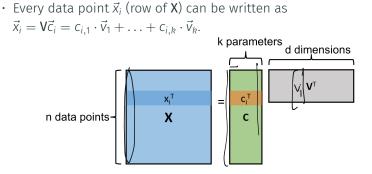


Claim: $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.



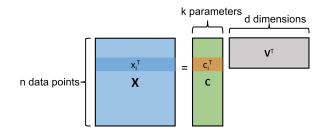
• X can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.

Claim: $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

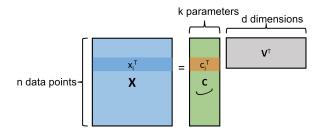


- X can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of $V \implies$ the columns of X are spanned by k vectors: the columns of C.

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C} \mathbf{V}^{\mathsf{T}}$.

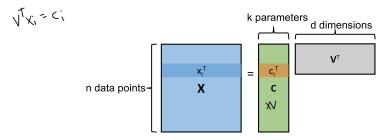


Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.



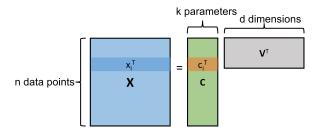
Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^T V = I$.

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.



Exercise: What is this coefficient matrix **C**? Hint: Use that $V^T V = I$. $\cdot X \not\models C V^T V \Longrightarrow X V = C \bigvee^T V \stackrel{\stackrel{\circ}{=} C$

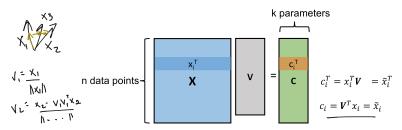
Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.



Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^T V = I$.

$$\cdot X = CV^T \implies XV = CV^TV \implies XV = C$$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C} \mathbf{V}^{\mathsf{T}}$.



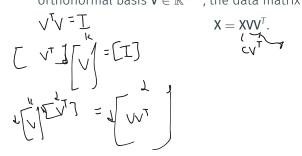
Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^T V = I$.

 $\cdot X = CV^T \implies XV = CV^TV \implies XV = C$

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$\mathsf{X} = \mathsf{C}\mathsf{V}^{\mathsf{T}}.$$

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as



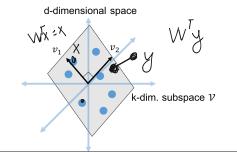
Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathsf{X} = \mathsf{X}\mathsf{V}\mathsf{V}^{\mathsf{T}}.$

• WV^T is a projection matrix, which projects vectors onto the subspace \mathcal{V} .

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

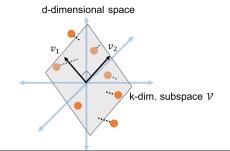
• WV^T is a projection matrix, which projects vectors onto the subspace V.



Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

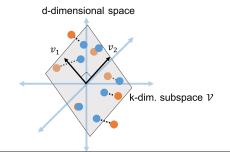
• **VV**^T is a projection matrix, which projects vectors onto the subspace \mathcal{V} .



Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

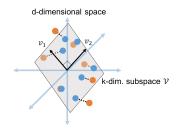
 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

• **VV**^T is a projection matrix, which projects vectors onto the subspace \mathcal{V} .



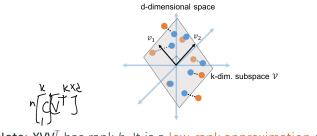
Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathrm{T}}$



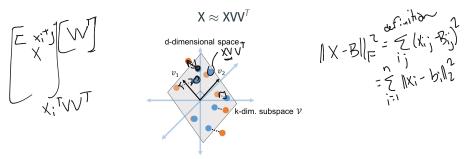
Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathrm{T}}$



Note: XVV^T has rank *k*. It is a low-rank approximation of **X**.

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:



Note: XVV^{*T*} has rank *k*. It is a low-rank approximation of **X**.

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}.$

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

Low-Rank Approximation

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T.$

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

• Letting $(\mathbf{XVV}^T)_i$, $(\mathbf{XVV}^T)_j$ be the i^{th} and j^{th} projected data points, $\|(\underbrace{\mathbf{XVV}^T})_i - \underbrace{(\mathbf{XVV}^T)_j}\|_2 = \|[(\mathbf{XV})_i - (\mathbf{XV})_j]\underline{V}^T\|_2 = \|[(\mathbf{XV})_i - (\mathbf{XV})_j]\|_2.$ C_i
C_i
C_j $\|C_i - C_j\|_Z$

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Low-Rank Approximation

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

- Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i, (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\mathbf{V}^{\mathsf{T}}\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\|_2.$
- Can use $\underbrace{XV}_{C} \in \underbrace{\mathbb{R}^{n \times k}}_{C}$ as a compressed approximate data set.

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Low-Rank Approximation

So Far: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T.$

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

- Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i, (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\mathbf{V}^{\mathsf{T}}\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\|_2.$
- Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace $\mathcal V$ and correspondingly V.

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Quick Exercise: Show that VV^{T} is idempotent. I.e., $(\mathbf{V}\mathbf{V}^T)(\mathbf{V}\mathbf{V}^T)\vec{\mathbf{v}} = (\mathbf{V}\mathbf{V}^T)\vec{\mathbf{v}}$ for any $\vec{\mathbf{v}} \in \mathbb{R}^d$.

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show that: $\sqrt{1/2}$

$$\frac{\|\vec{y}\|_{2}^{2} = \|(\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}\|_{2}^{2} + \|\vec{y} - (\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}\|_{2}^{2}}{\mathbf{v}^{\mathsf{T}}\mathbf{v}$$

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

A Step Back: Why Low-Rank Approximation?

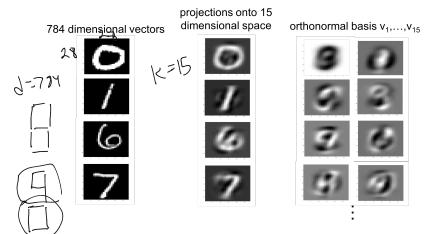
Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of *k* vectors.

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of *k* vectors.



Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

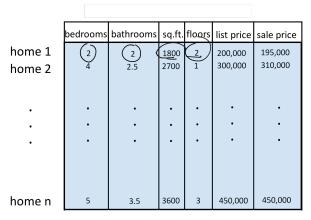
Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:



Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
					•	
					•	
			•			
-						
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•						
•						
•		•	•		-	
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

