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Logistics

• Midterms and Problem Set 2 are being graded now.
• Problem Set 3 will be released shortly, likely due 11/8.

2

• Q u i t a r y ,



Summary

Last Few Classes: The Johnson-Lindenstrauss Lemma

• Reduce n data points in any dimension d to O
(

log n
ε2

)

dimensions and preserve all pairwise distances up to 1± ε.

• Compression is linear via multiplication with a random, data
oblivious, matrix (linear compression)

• Proved via the distributional JL-Lemma which shows that if
Π ∈ Rm×d is a random matrix, Π"y2 ≈ ‖"y‖ for any y with high
probability.

• Proof of distributional JL via linearity of expectation, linearity of
variance, stability of the Gaussian distribution, and an
exponential concentration bound for Chi-Squared random
variables.
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Summary

Next Few Classes: Low-rank approximation, the SVD, and principal
component analysis (PCA).

• Reduce d-dimesional data points to a smaller dimension m.

• Like JL, compression is linear – by applying a matrix.

• Chose this matrix carefully, taking into account structure of the
dataset.

• Can give better compression than random projection (although
not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis,
column/row span, eigenvectors, etc.
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Embedding with Assumptions

Assume that data points "x1, . . . ,"xn lie in any k-dimensional subspace
V of Rd.

Claim: Let "v1, . . . ,"vk be an orthonormal basis for V and V ∈ Rd×k be
the matrix with these vectors as its columns. For all "xi,"xj:

‖VT"xi − VT"xj‖2 = ‖"xi −"xj‖2.

• VT ∈ Rk×d is a linear embedding of "x1, . . . ,"xn into k dimensions
with no distortion.
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Dot Product Transformation

Claim: Let "v1, . . . ,"vk be an orthonormal basis for V and V ∈ Rd×k be
the matrix with these vectors as its columns. For all "xi,"xj ∈ V :

‖VT"xi − VT"xj‖2 = ‖"xi −"xj‖2.
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Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points "x1, . . . ,"xn
lie close to any k-dimensional subspace V of Rd.

Letting "v1, . . . ,"vk be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns, VT"xi ∈ Rk is still a good
embedding for xi ∈ Rd.

The key idea behind low-rank approximation
and principal component analysis (PCA).

• How do we find V and V?

• How good is the embedding?
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Low-Rank Factorization

Claim: "x1, . . . ,"xn lie in a k-dimensional subspace V ⇔ the data
matrix X ∈ Rn×d has rank ≤ k.

• Letting "v1, . . . ,"vk be an orthonormal basis for V , can write "xi as:

"xi = V"ci = ci,1 ·"v1 + ci,2 ·"v2 + . . .+ ci,k ·"vk.

• So "v1, . . . ,"vk span the rows of X and thus rank(X) ≤ k.

!x1, . . . ,!xn ∈ Rd : data points, X ∈ Rn×d : data matrix, !v1, . . . ,!vk ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns !v1, . . . ,!vk .
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Claim: "x1, . . . ,"xn ∈ Rd lie in a k-dimensional subspace V ⇔ the data
matrix X ∈ Rn×d has rank ≤ k.

• Every data point "xi (row of X) can be written as
"xi = V"ci = ci,1 ·"v1 + . . .+ ci,k ·"vk.

• X can be represented by (n+ d) · k parameters vs. n · d.

• The rows of X are spanned by k vectors: the columns of V =⇒
the columns of X are spanned by k vectors: the columns of C.

!x1, . . . ,!xn : data points (in Rd), V : k-dimensional subspace of Rd , !v1, . . . ,!vk ∈
Rd : orthogonal basis for V . V ∈ Rd×k : matrix with columns !v1, . . . ,!vk .
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Low-Rank Factorization

Claim: If "x1, . . . ,"xn lie in a k-dimensional subspace with orthonormal
basis V ∈ Rd×k, the data matrix can be written as X = CVT.

Exercise: What is this coefficient matrix C? Hint: Use that VTV = I.

• X = CVT =⇒ XV = CVTV

=⇒ XV = C

!x1, . . . ,!xn ∈ Rd : data points, X ∈ Rn×d : data matrix, !v1, . . . ,!vk ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns !v1, . . . ,!vk .
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Projection View

Claim: If "x1, . . . ,"xn lie in a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be written as

X = CVT.

• VVT is a projection matrix, which projects vectors onto the
subspace V .

!x1, . . . ,!xn ∈ Rd : data points, X ∈ Rn×d : data matrix, !v1, . . . ,!vk ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns !v1, . . . ,!vk . 12
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Low-Rank Approximation

Claim: If "x1, . . . ,"xn lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT

Note: XVVT has rank k. It is a low-rank approximation of X.

XVVT = argmin
B with rows in V

‖X− B‖2F =
∑

i,j

(Xi,j − Bi,j)
2.

!x1, . . . ,!xn ∈ Rd : data points, X ∈ Rn×d : data matrix, !v1, . . . ,!vk ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns !v1, . . . ,!vk . 13
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Low-Rank Approximation

So Far: If "x1, . . . ,"xn lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT.

This is the closest approximation to X with rows in V (i.e., in the
column span of V).

• Letting (XVVT)i, (XVVT)j be the ith and jth projected data points,

‖(XVVT)i − (XVVT)j‖2 = ‖[(XV)i − (XV)j]VT‖2 = ‖[(XV)i − (XV)j]‖2.

• Can use XV ∈ Rn×k as a compressed approximate data set.

Key question is how to find the subspace V and correspondingly V.

!x1, . . . ,!xn ∈ Rd : data points, X ∈ Rn×d : data matrix, !v1, . . . ,!vk ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns !v1, . . . ,!vk .
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Properties of Projection Matrices

Quick Exercise: Show that VVT is idempotent. I.e.,
(VVT)(VVT)"y = (VVT)"y for any "y ∈ Rd.

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show that:

‖"y‖22 = ‖(VVT)"y‖22 + ‖"y− (VVT)"y‖22.
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A Step Back: Why Low-Rank Approximation?

Question: Why might we expect "x1, . . . ,"xn ∈ Rd to lie close to a
k-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis
of k vectors.
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Dual View of Low-Rank Approximation

Question: Why might we expect "x1, . . . ,"xn ∈ Rd to lie close to a
k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

17
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