COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.
Lecture 14



- Midterms and Problem Set 2 are being graded now.
- Problem Set 3 will be released shortly, likely due 11/8.
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Last Few Classes: The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension d to O ('°g”)

€2

dimensions and preserve all pairwise distances up to 1% e.
—_—

[ Compression is linear via multiplication with a random, data
oblivious, matrix (linear compression) L T Jf; "\[i]

- Proved via the distributional JL-Lemma which shows that if
N < R™<9 is a random matrix, My, ~ ||y|| for any y with high
probability. Y- XXy T

- Proof of distributional JL via linearity of expectation, linearity of
variance, stability of the Gaussian distribution, and an
exponential concentration bound for Chi—Sg,u_Mndom
variables.
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Next Few Classes: Low-rank approximation, thg SVD, and principal
component analysis (PCA).. (& j[ - [\j

- Reduce d-dimesional data points to a smaller dimension m.
- Like JL, compression is linear — by applying a matrix.

- Chose thisymatrix carefully/taking into account structure of the
dataset.

- Can give better compression than random projection (although
not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis,

column/row span, eigenvectors, etc.



Embedding with Assumptions

Assume that data points X, ..., X, lie in any {fe—dimensional subspace
d
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Embedding with Assumptions

Assume that data points X, ..., X, lie in any k-dimensional subspace
V of RY.

d-dimensional space

> k-dim. subspace V

l
e
Claim: Let V4, ..., V, be an orthonormal basis for V and V € R¥*F pe
the matrix With these vect(i,rus as its columns. For all Xj, X;:
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Embedding with Assumptions

Assume that data points X, ..., X, lie in any fe—di'mensional subspace
V of RY.
dix

d-dimensional space

vy V2

YV

k-dim. subspace V

Claim: Let Vi, ...,V be an orthonormal basis for V and V € R¥*F pe
the matrix with these vectors as its columns. For all X;, X;:

Y SR R T 1

/_—/
- VI e R**9 is a linear embedding of X;, ..., X, into k dimensions
— S

with WH.



Dot Product Transformation

Claim: Let ¥%,..., Vi be an orthonormal basis for Vand Ve R** be
the matrix with these vectors as its columns. For all X, X; € V: Ilj“’-:ﬁyﬁ}
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Dot Product Transformation

Claim: Let vy,. .., Vi be an orthonormal basis for V and V € R¥*F pe
the matrix with these vectors as its columns. For all X, X; € V:
IVIX: = VX[l = 1% = Xil|2-
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Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points Xi,..., X,

lie close to any k-dimensional subspace V of R
——— N
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Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points Xi,..., X,

lie close to any k-dimensional subspace V of R
d-dimensional space

k-dim. subspace V

Letting Vi, ..., Vx be an orthonormal basis for V and V € R9*k be the
matrix with these vectors as its columns, V\TY,-,G R* is still a good
embedding for x; € RY,



Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points Xi,..., X,

lie close to any k-dimensional subspace V of R
d-dimensional space

k-dim. subspace V

Letting Vi, ..., Vx be an orthonormal basis for V and V € R9*k be the
matrix with these vectors as its columns, V'X; € R* is still a good
embedding for x; € RY. The key idea behind low-rank approximation
and principal component analysis (PCA).



Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points Xi,..., X,

lie close to any k-dimensional subspace V of R
d-dimensional space

Letting Vi, ..., Vx be an orthonormal basis for V and V € R9*k be the
matrix with these vectors as its columns, V'X; € R |s still a g00
embedding for x; € RY. The key idea behind@a\
and principal component analysis (PCA). -

- How do we find V and V?

- How good is the embedding? 3
J—



Low-Rank Factorization

Claim: Xi,...,X, lie in a k-dimensional subspace V « the data
matrix X € R4 has rank < k.

— Xd.T — L rm\\ﬁ(ﬂ 4K
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X,..., % € RY: data points, X € R"*?: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.
9




Low-Rank Factorization

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R4 has rank < k.

Letting Vi, ..., V, be an orthonormal basis for V, can write X; as:

)?,':V(?,':C,'J~\71+C,'72-\72+...+Cu?-\7k.

r d dimensions

T -
X; =Ci1+ vy’ +

n data points— X Cio+ v, +

Ci,k * VkT

X,..., % € RY: data points, X € R"*?: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.




Low-Rank Factorization

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R4 has rank < k.

- Letting Vi, ...,V be an orthonormal basis for V, can write X; as:

)?,':V(?,':C,'J~\71+C,'72-\72+...+Cu?-\7k.

- So V,..., Vg span the rows of X and thus rank(X) < k.
VRSP R R T 2

r d dimensions

T -
X; =Ci1+ vy’ +

n data points— X Cio+ v, +

Ci,k * VkT

X,..., % € RY: data points, X € R"*?: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.




Claim: X;,..., X, € R? lie in a k-dimensional subspace V < the data
matrix X € R™9 has rank < k.

- Every data point X; (row of X) can be written as
)_(',‘ZVE,‘IC,'J '\71+...+c,<7k'\7k.
—_—




Claim: X;,..., X, € R? lie in a k-dimensional subspace V < the data
matrix X € R™9 has rank < k.

- Every data point X; (row of X) can be written as
X/—VC/—CH Vit +Ci,k'\7k-

T = . T
X = G v K parameters d dimensions
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Claim: X;,..., X, € R? lie in a k-dimensional subspace V < the data
matrix X € R™9 has rank < k.

- Every data point X; (row of X) can be written as
)_(',‘ZVE,‘IC,'J '\71+...+c,<7k'\7k.
dﬂ: é k parameters d dlmenS|ons

o . I

- X can be represented by (n + d) - k parameters vs. n - d.




Claim: X;,..., %X, € R? lie in a k-dimensional subspace V < the data
matrix X € R"™9 has rank < k.

- Every data point X; (row of X) can be written as
)_(’,':V(__",':C,‘J-\7'1+...+Ci7h-\7;?.

k parameters = .
d dimensions

. L ‘
xIT — CIT
L
n data points X C

- X can be represented by (n + d) - k parameters vs. n - d.

- The rows of X are spanned by k vectors: the columns of V. —
the columns of X are spanned by k vectors: the columns of C.

Xi,...,%;: data points (in R9), V: k-dimensional subspace of R?, ¥, ...,V, €
RY: orthogonal basis for V. V € R¥*k: matrix with columns V4, . .. , V.




Low-Rank Factorization

Claim: If X;,..., X, lie in a k=dimensional subspace with orthonormal
basis V € RY** the data matrix can be written as X = CV'.

k parameters

d dimensions
{_Jl_\ —

vT
XiT - ciT
n data points X C
X1,...,%, € RY: data points, X € R"%%: data matrix, ¥, ..., V, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.
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Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace with orthonormal
basis V € RY** the data matrix can be written as X = CV'.

k parameters

d dimensions
{_Jl_\ —

vT
X7 = o
n data points X C
-

Exercise: What is this coefficient matrix C? Hint: Use that VIV = I.

X1,...,%, € RY: data points, X € R"%%: data matrix, ¥, ..., V, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.
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Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace with orthonormal
basis V € RY** the data matrix can be written as X = CV'.

’( L= k
- arameters
NN } P d dimensions
{_Jl_\ —
vT

xT =| T

n data points X C

b\

Exercise: What is this coefficient matrix C? Hint: Use that VIV = I.

T
C X VvV = xvchv C

X1,...,%, € RY: data points, X € R"%%: data matrix, ¥, ..., V, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.
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Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace with orthonormal
basis V € RY** the data matrix can be written as X = CV'.

k parameters

d dimensions
{_Jl_\ —

\i

X! =

n data points X C

Exercise: What is this coefficient matrix C? Hint: Use that VIV = I.

cX=CV =— XV=CVV — XV-=C

X1,...,%, € RY: data points, X € R"%%: data matrix, ¥, ..., V, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.

1



Low-Rank Factorization

L$)
/R
N ixl
X &'
\[-_ i . =
¢ K’:ll\ n data points X (o
. - V\‘|y“5'
NP
T

basis\V € RYt* the data matrix can be written as X = CV'.

Claim: |f>?jj . ., %Xy liein a k-dimensional subspace with orthonormal

k parameters

Exercise: What is this coefficient matrix C? Hint: Use that VIV = I.

cX=CV = XV=CV'V = XV-=_C

X1,...,% € RY: data points, X € R"*?: data matrix, v1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.

1



Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R9*<* the data matrix can be written as

X=cV.

L><\/

X1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V.
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Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R9*<* the data matrix can be written as
VAR X = XV,

C vl -0 o

w iy _ *
7 v

X1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V.
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Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R9*<* the data matrix can be written as
X = XwW'.

- W/ is a projection matrix, which projects vectors onto the
subspace V.

X1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V. 9




Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R9*<* the data matrix can be written as
X = XW'|

- W/ is a projection matrix, which projects vectors onto the

subspace V.
d-dimensional space
T 2 T
W= W 4
2 - g
k-dim. subspace V

Xi,..., X, € R%: data points, X € R"%9: data matrix, ¥, . .., V, € R%: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V.

12
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Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R9*<* the data matrix can be written as
X = XwW'.

- W/ is a projection matrix, which projects vectors onto the

subspace V.
d-dimensional space
k-dim. subspace V
X1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-

nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V. 9




Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:

X ~ XV’

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V.
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Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with

orthonormal basis V € R9** the data matrix can be approximated as:

X ~ XV’

d-dimensional space

k-dim. subspace V

¥ookXe

h(‘@_r]

Note: XVV' has rank k. It is a low-rank approximation of X.
—

X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V.

13



Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:
X ~ Xw' o o
- x\“‘j D\/j d-dimensional space-y n \{\ 3%\\
X NV )]X'% = \
. - i W~ \0\\\1
'\’.\

£ NV

k-dim. subspace V

Note: XVVT has rank k. It is a low-rank approximation of X.

'L
XWT = argmin xfBH%fZ ,j—B i“)( b,
B with rows in V

X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V € RY*F: matrix with columns ¥, .. . , V. -




Low-Rank Approximation

So Far: If X4,...,X, lie close to a k-dimensional subspace V with

orthonormal basis V € R9** the data matrix can be approximated as:
/x

X =~ XWW'.

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V.
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Low-Rank Approximation

So Far: If X4,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:

X =~ XWW'.

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

+ Letting (XW');, (XW7); be the it" and ji" projected data points,

VYD) — (KW ll2 = I(XV); = (XV);IVT[l2 = [[[(XV); = (XV) -

Ci X . )
‘ ('\ l\ Ci~ (.)”L
X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V.
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Low-Rank Approximation

So Far: If X4,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:

X ~ XV
—_—

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

+ Letting (XW');, (XW7); be the it" and ji" projected data points,
XV = (AWl = [ITXV); = (V)Y = [[T(XV)i = (XV),]]12-

- Can use XV € R"** as a compressed approximate data set.

~

U
X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V.

14



Low-Rank Approximation

So Far: If X,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:
X &~ X',

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

+ Letting (XW');, (XW7); be the it" and ji" projected data points,
XV = (AWl = [ITXV); = (V)Y = [[T(XV)i = (XV),]]12-

- Can use XV € R"** as a compressed approximate data set.

Ke estion is how to find the subspace V and correspondingly V.
y question is how (iu pondingly V

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V.

14



Properties of Projection Matrices

Quick Exercise: Show that W/ is idempotent. l.e,,
(W) (WT)y = (WT)y for any y € RY.

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show th

1713 = [[(WWHYI3 + 11V — (WHY|I5.
/ ,j NIV
\éK 5
e .




A Step Back: Why Low-Rank Approximation?

Question: Why might we expect X, ..., X, € R? to lie close to a
k-dimensional subspace?

16



A Step Back: Why Low-Rank Approximation?

Question: Why might we expect X, ..., X, € R? to lie close to a
k-dimensional subspace?

- The rows of X can be approximately reconstructed from a basis
of k vectors.
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A Step Back: Why Low-Rank Approximation?

Question: Why might we expect X, ..., X, € R? to lie close to a
k-dimensional subspace?

- The rows of X can be approximately reconstructed from a basis
of k vectors.

projections onto 15

784 dimen?i?al vectors  dimensional space
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Dual View of Low-Rank Approximation

Question: Why might we expect X, ..., X, € R? to lie close to a
k-dimensional subspace?
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Dual View of Low-Rank Approximation

Question: Why might we expect X, ..., X, € R? to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.
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Dual View of Low-Rank Approximation

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

pbedrooms| bathrooms| sq.ft.|floags| list price | sale price
home 1 @ @ 1800 |2 ) 200,000 | 195,000
home 2 g 25 2700 | 1 | 300,000 | 310,000
home n 5 35 (3600 3 | 450,000 | 450,000
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Dual View of Low-Rank Approximation

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms| bathrooms| sq.ft.|floors

home 1 2 2 1800 | 2
home 2 4 2.5 2700 1

home n 5 35 3600 [ 3
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Dual View of Low-Rank Approximation

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms, floors| list price|sale price
home 1 2 2 | 200,000 | 195,000
home 2 4 1 300,000 | 310,000

home n 5 3 | 450,000 | 450,000

17



Dual View of Low-Rank Approximation

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.
Lingarly Depe‘gdent Variables:

X A %, 10000* oms 10* (sq. ft.) ~

~

bedrooms, / floors sale price
home 1 2 2 195,000
home 2 4 1 310,000

home n 5 3 450,000

17



