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Logistics

• Problem Set 2 due tomorrow at 11:59pm.
• Solutions will be released shortly after submission so they
can be used to study.

• No quiz this week.
• Midterm review office hours: Tuesday 10/15 1:30-3pm
Herter Hall 205. Wednesday 10/16 10am-11:30am
Goessmann 151. Thursday in class.

• The midterm will be Thursday 7pm-9pm in ILC N151.

2



Summary

Last Class:

• Intro to dimensionality reduction.

• Intro to low-distortion embeddings and the
Johnson-Lindenstrauss Lemma.

This Class:

• Reduction of JL Lemma to the Distributional JL Lemma.

• Proof the Distributional JL Lemma.

• Example application of JL to clustering.
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The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points
x⃗1, . . . , x⃗n ∈ Rd and ϵ > 0 there exists a linear mapΠ : Rd → Rm

such that m = O
(

log n
ϵ2

)
and letting x̃i = Πx⃗i:

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

Further, if Π ∈ Rm×d has each entry chosen i.i.d. from
N (0, 1/m), it satisfies the guarantee with high probability.
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Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

Applying a random matrix Π to any vector y⃗ preserves y⃗’s norm with
high probability.

• Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

• Can be proven from first principles.

Π ∈ Rm×d : random projection matrix. d: original dimension. m: compressed
dimension, ϵ: embedding error, δ: embedding failure prob. 5



Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given x⃗1, . . . , x⃗n, define
(n
2
)
vectors y⃗ij where y⃗ij = x⃗i − x⃗j.

• If we choose Π with m = O
(

log 1/δ
ϵ2

)
, for each y⃗ij with probability

≥ 1− δ we have:

(1− ϵ)∥⃗yij⃗xi − x⃗j∥2 ≤ ∥Πy⃗ijΠ(⃗xi − x⃗j)x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗yij⃗xi − x⃗j∥2

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob.
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Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)
= O

(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)
Yields the JL lemma.

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob.
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Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩ =
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m).

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ϵ: error, δ: failure prob. 8



Distributional JL Proof

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩ =
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m).

• gi · y⃗(i) ∼ N (0, y⃗(i)
2

m ): normally distributed with variance y⃗(i)2
m .

What is the distribution of y(̃j)? Also Gaussian!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable.
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Distributional JL Proof

Letting ỹ = Πy⃗, we have ỹ(j) = ⟨Π(j), y⃗⟩ and:

ỹ(j) =
d∑
i=1

gi · y⃗(i) where gi · y⃗(i) ∼ N
(
0, y⃗(i)

2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1, σ

2
1 ) and b ∼ N (µ2, σ

2
2) we have:

a+ b ∼ N (µ1 + µ2, σ
2
1 + σ2

2)

Thus, ỹ(j) ∼ N (0, y⃗(1)
2

m + y⃗(2)2
m + . . .+ y⃗(d)2

m
∥⃗y∥2

2
m ) I.e., ỹ itself is a random

Gaussian vector. Rotational invariance of the Gaussian distribution.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable
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Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥y∥̃22]?

E[∥ỹ∥22] = E

 m∑
j=1

ỹ(j)2
 =

m∑
j=1

E[ỹ(j)2]

=
m∑
j=1

∥⃗y∥22
m = ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable
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Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m) and E[∥ỹ∥22] = ∥⃗y∥22
∥y∥̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ ϵEZ] ≤ 2e−mϵ2/8.

If we set m = O
(

log(1/δ)
ϵ2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ϵ)∥⃗y∥22 ≤ ∥y∥̃22 ≤ (1+ ϵ)∥⃗y∥22.

Gives the distributional JL Lemma and thus the classic JL Lemma!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ϵ: embedding error, δ: embedding failure prob.
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Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x⃗∈Ck

∥⃗x− µj∥22.

Write in terms of distances:

Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22
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Example Application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22

If we randomly project tom = O
(

log n
ϵ2

)
dimensions, for all pairs x⃗1, x⃗2,

(1− ϵ)∥⃗x1 − x⃗2∥22 ≤ ∥x̃1 − x̃2∥22 ≤ (1+ ϵ)∥⃗x1 − x⃗2∥22 =⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x1̃,x̃2∈Ck

∥x1̃ − x̃2∥22

(1− ϵ)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ϵ)Cost(C1, . . . , Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cϵ times the true optimal. Good
exercise to prove this.
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