COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.
Lecture 12



- Problem Set 2 due tomorrow at 11:59pm.

- Solutions will be released shortly after submission so they
can be used to study.

- No quiz this week.

- Midterm review office hours: Tuesday 10/15 1:30-3pm
Herter Hall 205. Wednesday 10/16 10am-11:30am
Goessmann 151. Thursday in class.

- The midterm will be Thursday 7pm-9pm in ILC N151.



Last Class:
- Intro to dimensionality reduction.

- Intro to low-distortion embeddings and the
Johnson-Lindenstrauss Lemma.

-

This Class:

+ Reduction of JL Lemma to the Distributional JL Lemma.

- Proof the Distributional JL Lemma.
__/_/

- Example application of JL to clustering.



The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points

X1,...,X, € R?and e > 0 there exists a linear map M : RY — R™
ggch thatm =0 ('°g”) and letting % = NX;:
g/
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Foralli,j: (1= €)IXi — Xill2 < |IXi — Xill < (14 €)X — Xjl|2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m), it satisfies the guarantee with high probability.
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Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

7~

Distributional JL Lemma: Let M € R™*9 have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O ("’ﬂ%) then for any
. =

y € RY, with probability >1—§

R —_

(1= 7l < INFll2 < (1 + )2
[EN) WX )

N e R™*%: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob. 5




Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O ("’ﬂ%) then for any
y € RY, with probability >1—§

(1=l < INYll2 < (1+ &)I¥l2

.

Applying a random matrix I to any vector y preserves y's norm with
high probability.

N e R™*%: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob.




Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O ("’ﬂ%) then for any
y € RY, with probability >1—§

(1=l < INYll2 < (1+ &)I¥l2

.

Applying a random matrix I to any vector y preserves y's norm with
high probability.
- Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

- Can be proven from first principles.

N e R™*%: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob.




Distributional JL =

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, . em-
bedding error, 6: embedding failure prob. 6




Distributional JL =

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL

Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, . em-
bedding error, 6: embedding failure prob. 6




Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.

—_— -
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X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, . em-
bedding error, 6: embedding failure prob. 6




Distributional JL =

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.
b
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X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, . em-
bedding error, 6: embedding failure prob. 6




Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.

- If we choose Mwithm =0 ('ng) for each yj; with probability
—\
>1— 6 we have:

(1- 6)Hyjllz < Nyl < (14 1Yyl

- L
Xs‘)(j %A i~ X)

X1, ..., %n: original points, X1, ..., %n: compressed points, M € R™*%: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 6




Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.

- If we choose Mwithm =0 ('ng) for each yj; with probability

>1— 6 we have: .
L {V‘)
(1=alxi =Xl < HT( = X)l2 < (14 lIX — Xll2
HTYI TK)“L
I -%\
X1, ..., %n: original points, X1, ..., %n: compressed points, M € R™*%: random

projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 6




Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.

- If we choose Mwithm =0 ('ng), for each yj; with probability
>1— 6 we have:

(1= X = Xlla < 11X = X[l < (1 + )lIXi = Xl

X1, ..., %n: original points, X1, ..., %n: compressed points, M € R™*%: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 6




Distributional JL = JL

Claim: If we chooseﬂwﬂn) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability

21—_5_’@& -

(1=K = Xlla < [IX; = Xjll2 < (T+ )lIXi = Xjl2-

—

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 7




Distributional JL = JL

Claim: If we choose [, with i.i.d. A/(0,1/m) entries and

m=0 (M) letting X; = MX;, for each pair X;, X; with probability

>1—5’ ave:

MR an
A
(- )& @l — % — 5l < 15— &l < (0 + I~ 7
With w
 Wwith w

probability are all pairwise distances preserved?
Liavon oo

bt poe ST Kk
=P (V)

g = ()4 -(3)
VO

—_

7

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em
bedding error, §: embedding failure prob.




Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T + ) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
preserved. S

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.




Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T + ) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
preserved. S |- 4

Apply the claim with 6" = &/(3).

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.




Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T + ) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
preserved.

Apply the claim with & = §/(). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 4.

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.




Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T + ) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
preserved.

Apply the claim with & = §/(). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 4.

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.




Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T + ) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
=

preserved.

Apply the claim with & = §/(0)\ = form =0 (%) all

pairwise distances preserved with probability > 1— 4.

~0 <'°g(:2/5)> 0 ('Og(gz)/5)>

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.




Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T + ) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
preserved.

Apply the claim with & = §/(). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 4.

e <'°g(12/5)> i <|og((2)/6)> Y (mg(nj/a))

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.




Distributional JL = JL

Claim: If we choose M with i.i.d.\\(0,1/m) entries and

m=20 (M) letting X; = MX;, for each pair X;, X; with probability

>1—§" we have:
(1= X = Xilla < 1% = Xl < (V+ O)IX; = X2
e ——

With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
——

preserved.

Apply the claim with & = §/(). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 4.

€ 2

o (84 -o(451%) (=) -o(%p)
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X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.




Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M> letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:

(1= OIXi = Xill2 < 1% — Xjll2 < (T + ) [IX; — Xl
With what probability are all pairwise distances preserved?
Union bound: With probability > 1— (7) - ¢’ all pairwise distances are
preserved.
Apply the claim with & = §/(). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 4.

o (Ig(vé)> . <|og(( DY _ (log(nz/a)) 0 <|g<n/o>>

€ €2 €2 €2

Yields the JL lemma. O( )E‘g;
<



Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as N(0,1/m). If we set m = O (M) then for any

v € RY with probability > 1 -6

(1 =9yl < INYll2 < (1+ )I¥l2

—_—

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 8




Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as M(0,1/m). If we setm = O ('°g“/5 ) then for any

v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

n\x | 4Ly c c'\|

- Let y denote I'Iy and let N(j) denote the j row of M.

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 8




Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as M(0,1/m). If we setm = O ('°g“/5 ) then for any

v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

- Lety denote I'Iy and let N(j) denote the j row of M.
- Foranyj, y(j 1),

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 8




Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as M(0,1/m). If we setm = O ('°g“/5 ) then for any

v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

- Lety denote I'Iy and let N(j) denote the j row of M.
- Foranyj, y(j )7}

e 1) nl .|~
01-12 34 67 .10 —49.. Y2 3
Y3
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¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 8




Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as M(0,1/m). If we setm = O ('°g“/5 ) then for any

v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

- Lety denote I'Iy and let N(j) denote the j row of M.
- Foranyj, y(j ),V) = Z, 18i - Y(i) where g ~ N(0,1/m).

%' ~N (o, ’/m

1G) n

.01)(1.3) @ﬁ? 10 —49.. Y2

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 8




Distributional JL Proof

. Lehldenote I'Iy and let N(j) denote the j row of M.
. Forany;y )9 =% g - §(i) where g ~ N'(0,1/m).

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 9




Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.

- Forany j,y(j) = (N(),y) = Z: 18- YU) y(i) where g; ~ N'(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance %

(o)

-

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 9




Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.

- For any j, y(j) )9 =% g - §(i) where g ~ N'(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

i 1 y(®?
variance variance —=—

m 1 m
[ \ I 1

VANV AN

gi gi-y()

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 9




Distributional JL Proof

-Letydenouaﬂyandletﬂ()denomthefhrmNofﬂ
- For any j, y(j) ),V) = Engr V(i) where g; ~ N(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

y(2)?
variance —— (@2

variance 2@ ™ variance yT
m
VANIAGRYAN
y(i) =191 y() + g2-y(2) + . + gn - y(@)]
—
L 50)~
¥ € RY arbitrary vector, y € R™: compressed vector, 1 € R™*%: random

projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.




Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.
- For any j, y(j) ),V) = Z, 18 - Y(i) where g ~ N(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

y(2)?
variance —— (@2

2 .
variance £ ™ variance -

e T ——

A+/\+ j\

Yy =g -y + g2 y(2) + ... + gn-y(d)]

What is the distribution of y(j)?

¥ € RY arbitrary vector, y € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.




Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.
- For any j, y(j) ),V) = Z, 18 - Y(i) where g ~ N(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

y(2)?
variance —— (@2

2 .
variance £ ™ variance -

e T ——

A+/\+ j\

Yy =g -y + g2 y(2) + ... + gn-y(d)]

What is the distribution of y(j)? Also Gaussian!

¥ € RY arbitrary vector, y € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.




Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j), ) and:
d

’3@: Zg,- (i) where g - V(i) ~ N (O

PI_@()U =0

¥ € R® arbitrary vector, j € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j), ) and:

d oy
S =N g o y(i)?
Y() =Y _ g - y(i) where g; - J(i) ~ N (o, m> .

i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N + p, 0 + 03)

¥ € R® arbitrary vector, j € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j), ) and:

d oy
S =N g o y(i)?
Y() =Y _ g - y(i) where g; - J(i) ~ N (o, m> .

i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N + p, 0 + 03)

VANYINLIVANS

¥ € R® arbitrary vector, j € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j),y) and:
s (i)’
70) = Y- & 50) where g ) ~ v (0.5

i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N+ p2, 07 + 03)

Thus, ¥(j) ~ N(0, 7%)2 /C) T V(d)z)

m

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j), ) and:

’ v(i)2
y() = ;g,- -y(i) where g; - y(i) NN<O’y(r;1)> .

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N + p, 0 + 03)

<lI

Thus, §(j) ~ A(0, 2y
f

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

Letting y = My, we have y(j) /),y) and: </-()> v? v

d

2
OEDI-E ()whereg[.y()NN<O7y(r;)>.

i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N + p, 0 + 03)

o 1711 7 itself | i
Thus, y(j) ~ N(0, 72) le, y itself is a random Gaussian vector.
Rotational invariance of the Gaussian distribution.

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

y() ~ N, [I71lz/m)- /y(\)I\V;LQN\ )WLZ

o

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

1




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

What is E[||§|2]?

b ﬂiw ]
N 2Nk g
wdq ) - By @fm 2% =k

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

1




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, [713/m).
What is E[||§|2]?

E[§]5] =E | >_¥()
j=1

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

1




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:
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So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, [713/m).
What is E[||§|2]?

B =B | S 907 = 3 B0
j=1 j=1
= Wy
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So y has the right norm_in expectation.
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How is ||y]|3 distributed? Does it concentrate?
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Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

y(j) ~ N(0, [I¥[15/m) and E[I§|I5] = [IVI5

19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)
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¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, e: embedding error, 6: embedding failure prob.

12



Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),

forany y € RY, letting y = Ny:
y(j) ~ N (0, [[¥]13/m) and E[|[y[I3] = [I¥]l3

19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr[|Z — EZ| > EZ] < 2e~M</8,
\
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19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom, \aa_,;) /4_7-/5

Prliz — Ez| > EZ] < 2e™/%. Qe T

If we setm\:%fi“f ) with probability 1 — O(e~'&(//9)) > 1 — 4
——

1—lVIZ < VI < (1 VI3
@y\lz Wl <+l

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, e embedding error, 6: embedding failure prob.

12




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

y(j) ~ N (0, [I¥1I3/m) and E[|[§[I3] = IV]l3
19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr[|Z — EZ| > EZ] < 2e~M<'/8,

If we setm =0 <'°g 1/2) ) with probability 1— O(e~'0&(1/%)) > 1 — §:

(1= IVIIZ < 112 < (1+ e)I¥3-

Gives the distributional JL Lemma and thus the classic JL Lemmal!
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Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

13



Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

O

¢ o
O U2
(] @ _/ i
[ ® ) y L
lg) x
o
k-means Objective: Cost(C;, . .. = min, Z > X = 3.

1 1 XeCy,

13



Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

e L
e e

o
.l‘Z P
P ([
o
k-means Objective: Cost(Cy, ... = min Z > UK = 3.

1 1 XeCy,
Write in terms of distances:
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Example Application: k-means clustering

k
k-means Objective: Cost(C,...,C) = min, S K -%l?
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Example Application: k-means clustering

k-means Objective: Cost(Cy,...,Cy) = Jmin Z > IK =%l

I =1 X%,%€Cy,

If we randomly projecttom =0 ('°g”) dimensions, for all pairs X, X,

(1= )Xy = Xal5 < [I% = Rall5 < (V+ €)% — XI5
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Example Application: k-means clustering

k-means Objective: Cost(Cy,...,Cy) = Jmin Z > IK =%l

I =1 X%,%€Cy,

If we randomly projecttom =0 ('°g”) dimensions, for all pairs X, X,

(1= 9)lI% = Xl5 < 1% = %5 < M+ K —Xl; =
(I“E,) ]X;“X;)\Z
Lettind\(ost(Cy, . .., C) = Zmin, Z >0 IK = %o q’l+dllx Xz}lz

J 1 X1,%€Cy,

(1= €)Cost(Cy,...,Cx) < Cost(Cy,...,Ck) < (14 €)Cost(Ca,...,Ck).
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Example Application: k-means clustering

k-means Objective: Cost(Cy, . ..,Ck) = Jmin Z > IK =%l
I =1 X%,%€Cy,
If we randomly projectto m = ('°§”) imensions, for all pairs X, X,

(1= 9% =Rl < 1% — %[ < (1 + )l — R} =

Letting Cost(Cy, ..., C) = Zmin, Z > IK = %o

J 1 % 7X2€V

(1= €)Cost(Cy,...,Cx) < Cost(Cy,...,Ck) < (14 €)Cost(Ca,...,Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(Ci, ..., Ck). The optimal set of clusters
will have true cost within 1+ ce times the true optimal. Good
exercise to proW
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