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Logistics

• Problem Set 2 due tomorrow at 11:59pm.
• Solutions will be released shortly after submission so they
can be used to study.

• No quiz this week.
• Midterm review office hours: Tuesday 10/15 1:30-3pm
Herter Hall 205. Wednesday 10/16 10am-11:30am
Goessmann 151. Thursday in class.

• The midterm will be Thursday 7pm-9pm in ILC N151.
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Summary

Last Class:

• Intro to dimensionality reduction.

• Intro to low-distortion embeddings and the
Johnson-Lindenstrauss Lemma.

This Class:

• Reduction of JL Lemma to the Distributional JL Lemma.

• Proof the Distributional JL Lemma.

• Example application of JL to clustering.
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The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points
!x1, . . . ,!xn ∈ Rd and ε > 0 there exists a linear mapΠ : Rd → Rm

such that m = O
(

log n
ε2

)
and letting x̃i = Π!xi:

For all i, j : (1− ε)‖!xi −!xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1+ ε)‖!xi −!xj‖2.

Further, if Π ∈ Rm×d has each entry chosen i.i.d. from
N (0, 1/m), it satisfies the guarantee with high probability.
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Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ε2

)
, then for any

!y ∈ Rd, with probability ≥ 1− δ

(1− ε)‖!y‖2 ≤ ‖Π!y‖2 ≤ (1+ ε)‖!y‖2

Applying a random matrix Π to any vector !y preserves !y’s norm with
high probability.

• Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

• Can be proven from first principles.

Π ∈ Rm×d : random projection matrix. d: original dimension. m: compressed
dimension, ε: embedding error, δ: embedding failure prob. 5
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Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given !x1, . . . ,!xn, define
(n
2
)
vectors !yij where !yij = !xi −!xj.

#x1, . . . ,#xn : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ε: em-
bedding error, δ: embedding failure prob. 6
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Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ε2

)
, letting x̃i = Π!xi, for each pair !xi,!xj with probability

≥ 1− δ′ we have:

(1− ε)‖!xi −!xj‖2 ≤ ‖x̃i − xj̃‖2 ≤ (1+ ε)‖!xi −!xj‖2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ε2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ε2

)

= O
(
log(

(n
2
)
/δ)

ε2

)
= O

(
log(n2/δ)

ε2

)
= O

(
log(n/δ)

ε2

)
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Yields the JL lemma.

#x1, . . . ,#xn : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ε: em-
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Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ε2

)
, then for any

!y ∈ Rd, with probability ≥ 1− δ

(1− ε)‖!y‖2 ≤ ‖Π!y‖2 ≤ (1+ ε)‖!y‖2

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉

=
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m)

.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ε: error, δ: failure prob. 8
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• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉

=
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m)

.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ε: error, δ: failure prob. 8



Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ε2

)
, then for any

!y ∈ Rd, with probability ≥ 1− δ

(1− ε)‖!y‖2 ≤ ‖Π!y‖2 ≤ (1+ ε)‖!y‖2

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉

=
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m)

.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ε: error, δ: failure prob. 8

m

d
spy



Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ε2

)
, then for any

!y ∈ Rd, with probability ≥ 1− δ

(1− ε)‖!y‖2 ≤ ‖Π!y‖2 ≤ (1+ ε)‖!y‖2
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Distributional JL Proof
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m .

What is the distribution of y(̃j)? Also Gaussian!
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projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable. 9
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Distributional JL Proof

Letting ỹ = Π!y, we have ỹ(j) = 〈Π(j),!y〉 and:

ỹ(j) =
d∑

i=1

gi ·!y(i) where gi ·!y(i) ∼ N
(
0,

!y(i)2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1 ) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
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#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
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projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

10

(Tib),y>syn



Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m).

What is E[‖y‖̃22]?

E[‖ỹ‖22] = E




m∑

j=1

ỹ(j)2




=
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

‖!y‖22
m

= ‖!y‖22

So ỹ has the right norm in expectation.

How is ‖ỹ‖22 distributed? Does it concentrate?

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable
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E[ỹ(j)2]

=
m∑

j=1

‖!y‖22
m

= ‖!y‖22
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y(̃j) ∼ N (0, ‖!y‖22/m).

What is E[‖y‖̃22]?
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ỹ(j)2


 =
m∑

j=1
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Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m) and E[‖ỹ‖22] = ‖!y‖22

‖y‖̃22 =
∑m

i=1 y(̃j)2 a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ε: embedding error, δ: embedding failure prob. 12
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‖y‖̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)
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projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ε: embedding error, δ: embedding failure prob. 12

✓ Gaus ian



Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:
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freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ εEZ] ≤ 2e−mε2/8.

If we set m = O
(

log(1/δ)
ε2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ε)‖!y‖22 ≤ ‖y‖̃22 ≤ (1+ ε)‖!y‖22.
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Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m) and E[‖ỹ‖22] = ‖!y‖22
‖y‖̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ εEZ] ≤ 2e−mε2/8.

If we set m = O
(

log(1/δ)
ε2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ε)‖!y‖22 ≤ ‖y‖̃22 ≤ (1+ ε)‖!y‖22.

Gives the distributional JL Lemma and thus the classic JL Lemma!

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ε: embedding error, δ: embedding failure prob.
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Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x∈Ck

‖!x− µj‖22.

Write in terms of distances:

Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x1,#x2∈Ck

‖!x1 −!x2‖22
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Example Application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x1,#x2∈Ck

‖!x1 −!x2‖22

If we randomly project tom = O
(

log n
ε2

)
dimensions, for all pairs !x1,!x2,

(1− ε)‖!x1 −!x2‖22 ≤ ‖x̃1 − x̃2‖22 ≤ (1+ ε)‖!x1 −!x2‖22

=⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x1̃,x̃2∈Ck

‖x1̃ − x̃2‖22

(1− ε)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ε)Cost(C1, . . . , Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cε times the true optimal. Good
exercise to prove this.
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