COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2024.

Lecture 12

- Problem Set 2 due tomorrow at 11:59pm.
- Solutions will be released shortly after submission so they can be used to study.
- No quiz this week.
- Midterm review office hours: Tuesday 10/15 1:30-3pm Herter Hall 205. Wednesday 10/16 10am-11:30am Goessmann 151. Thursday in class.
- The midterm will be Thursday 7pm-9pm in ILC N151.

Last Class:

- Intro to dimensionality reduction.
- Intro to low-distortion embeddings and the Johnson-Lindenstrauss Lemma.

This Class:

- Reduction of JL Lemma to the Distributional JL Lemma.
- Proof the Distributional JL Lemma.
- Example application of JL to clustering.

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\mathbf{\Pi} : \mathbb{R}^d \to \mathbb{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \mathbf{\Pi} \vec{x}_i$: For all $i, j: (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$ Further, if $\mathbf{\Pi} \in \mathbb{R}^{m imes d}$ has each entry chosen i.i.d. from $\mathcal{N}(0,1/m)$, it satisfies the guarantee with high probability. mx)

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\underline{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$ nx $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed

dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

Applying a random matrix $\mathbf{\Pi}$ to any vector \vec{y} preserves \vec{y} 's norm with high probability.

 $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

Applying a random matrix $\mathbf{\Pi}$ to any vector \vec{y} preserves \vec{y} 's norm with high probability.

- Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
- Can be proven from first principles.

 $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserve<u>s distances</u> between vectors.

Since **Π** is linear these are the same thing!

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

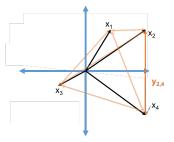
Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.



Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose Π with $\underline{m} = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta$ we have:

$$\begin{array}{c} (1-\epsilon) \|\vec{y}_{ij}\|_{2} \leq \|\Pi \vec{y}_{ij}\|_{2} \leq (1+\epsilon) \|\vec{y}_{ij}\|_{2} \\ (1-\epsilon) \|\vec{y}_{ij}\|_{2} \|\vec{y}_{ij}\|_{2} \\ (1$$

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta$ we have: $(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \leq \|\Pi(\vec{x}_i - \vec{x}_j)\|_2 \leq (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$ $\left\|\Pi(\vec{x}_i - \Pi(\vec{x}_j)\|_2 \leq (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta$ we have:

$$(1-\epsilon)\|\vec{\mathbf{x}}_i-\vec{\mathbf{x}}_j\|_2 \leq \|\tilde{\mathbf{x}}_i-\tilde{\mathbf{x}}_j\|_2 \leq (1+\epsilon)\|\vec{\mathbf{x}}_i-\vec{\mathbf{x}}_j\|_2$$

Claim: If we choose $\underline{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \underline{\delta'}$ we have:

$$(1-\epsilon)\|\vec{\mathbf{x}}_i-\vec{\mathbf{x}}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{\mathbf{x}}_i-\vec{\mathbf{x}}_j\|_2$$

Claim: If we choose Π with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability With what probability are all pairwise distances preserved? Linion bon? Aij = event that I don t perere Lithe Xi-Xj $\left|-\binom{2}{2}\right|$ (1) = (2)

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - {n \choose 2} \cdot \delta'$ all pairwise distances are preserved.

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved. $\Sigma \mid - \zeta$

Apply the claim with $\delta' = \delta / \binom{n}{2}$.

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\mathbf{\tilde{x}}_i = \mathbf{\Pi} \mathbf{\tilde{x}}_i$, for each pair $\mathbf{\tilde{x}}_i, \mathbf{\tilde{x}}_j$ with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\mathbf{\tilde{x}}_i = \mathbf{\Pi} \mathbf{\tilde{x}}_i$, for each pair $\mathbf{\tilde{x}}_i, \mathbf{\tilde{x}}_j$ with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$$

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\mathbf{\tilde{x}}_i = \mathbf{\Pi} \mathbf{\tilde{x}}_i$, for each pair $\mathbf{\tilde{x}}_i, \mathbf{\tilde{x}}_j$ with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta / \binom{n}{2}$ \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right)$$

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\mathbf{\tilde{x}}_i = \mathbf{\Pi} \mathbf{\tilde{x}}_i$, for each pair $\mathbf{\tilde{x}}_i, \mathbf{\tilde{x}}_j$ with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right)$$

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/\underline{m})$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\tilde{\mathbf{x}}_i-\tilde{\mathbf{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - {\binom{n}{2}} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2})/\delta}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$$

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - {n \choose 2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$$

Yields the JL lemma.
$$O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$$

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_{2} \le \|\mathbf{\Pi}\vec{y}\|_{2} \le (1+\epsilon)\|\vec{y}\|_{2}$$

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

 $(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$

• Let $\tilde{\mathbf{y}}$ denote $\Pi \tilde{\mathbf{y}}$ and let $\Pi(j)$ denote the j^{th} row of Π .

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

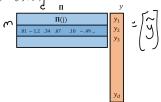
$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any *j*, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

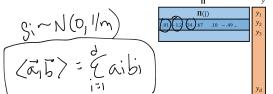
- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any *j*, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$



Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.



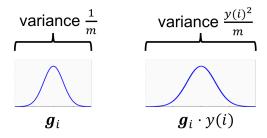
- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any $j, \tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \sim \mathcal{N}(0, 1/m)$.

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: *j*th row of $\mathbf{\Pi}$, *d*: original dimension. *m*: compressed dimension, \mathbf{g}_j : normally distributed random variable.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \underline{\mathbf{g}}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \sim \mathcal{N}(0, 1/m)$.
- $\begin{array}{c} \cdot \mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^{2}}{m}): \text{ normally distributed with variance } \frac{\vec{y}(i)^{2}}{m}. \\ (\\ \mathcal{N}(\mathcal{O}_{I} + \frac{1}{m}) \end{array}$

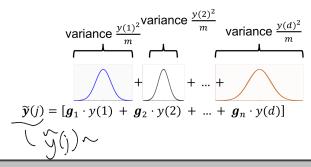
 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_i : normally distributed random variable.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any $j, \tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.



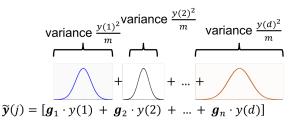
 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_j : normally distributed random variable.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.



 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_j : normally distributed random variable.

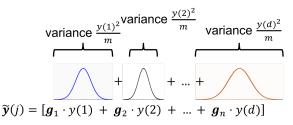
- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.



What is the distribution of $\tilde{\mathbf{y}}(j)$?

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: *j*th row of $\mathbf{\Pi}$, *d*: original dimension. *m*: compressed dimension, \mathbf{g}_j : normally distributed random variable.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any *j*, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.



What is the distribution of $\tilde{\mathbf{y}}(j)$? Also Gaussian!

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_j : normally distributed random variable.

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{\mathbf{y}}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{\mathbf{y}} \rangle$ and:

$$\underbrace{\tilde{\mathbf{y}}(j)}_{i=1} = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}\left(0, \frac{\vec{\mathbf{y}}(i)^{2}}{m}\right).$$

$$\underbrace{\mathrm{F}\left(\mathbf{y}\left(i\right)\right)}_{i=1} = O$$

$$\operatorname{Var}\left(\mathbf{y}\left(i\right)\right) = \int_{i=1}^{d} \underbrace{\mathbf{y}}_{i=1}\left(i\right)^{2} = \frac{1}{m} \underbrace{\mathbf{z}}_{i=1}^{d} \mathbf{y}(i)^{2} = \frac{1}{m} \underbrace{\mathbf{y}}_{i=1}\left(i\right)^{2}$$

$$\underbrace{\mathrm{F}\left(\mathbf{y}\left(i\right)\right)}_{i=1} \sim \mathcal{N}\left(0, \frac{|\mathbf{y}||^{2}}{m}\right)$$

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_i : normally distributed random variable

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \frac{\vec{y}(1)^2}{m} + \frac{\vec{y}(2)^2}{m} + \ldots + \frac{\vec{y}(d)^2}{m})$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \frac{\|\vec{\mathbf{y}}\|_2^2}{m})$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and: $\langle \mathbf{\Pi}(j) \rangle_{I} \langle \mathbf{y} \rangle = \vec{y}$
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

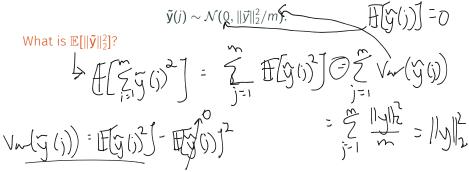
Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \frac{\|\vec{\mathbf{y}}\|_2^2}{m})$ l.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$: $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:



So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right]$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{i=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m}$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$
$$= \sum_{i=1}^m \frac{\|\vec{y}\|_2^2}{m} = \|\vec{y}\|_2^2$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$
$$= \sum_{i=1}^m \frac{\|\vec{y}\|_2^2}{m} = \|\vec{y}\|_2^2$$

So $\tilde{\boldsymbol{y}}$ has the right norm in expectation.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$
$$= \sum_{i=1}^m \frac{\|\vec{y}\|_2^2}{m} = \|\vec{y}\|_2^2$$

So $\tilde{\mathbf{y}}$ has the right norm in expectation.

How is $\|\mathbf{\tilde{y}}\|_2^2$ distributed? Does it concentrate?

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \|\vec{y}\|_2^2$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

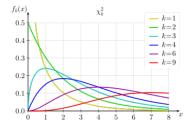
 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $ilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|ec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{ ilde{y}}\|_2^2] = \|ec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)



So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $ilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|ec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{ ilde{y}}\|_2^2] = \|ec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom,

 $\Pr\left[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}\right] \le 2\underline{e^{-m\epsilon^2/8}}.$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{y} = \Pi \vec{y}$: $\tilde{y}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$ and $\mathbb{E}[\|\tilde{y}\|_2^2] = \|\vec{y}\|_2^2$ $\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom, $\lim_{z \to 0} \frac{||z|}{r}$, $\frac{|z|}{r}$, $\frac{||z|}{r}$, $\frac{|z|}{r}$

If we set
$$\underline{m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)}$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
 $\underbrace{(1-\epsilon)\|\vec{y}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1+\epsilon)\|\vec{y}\|_2^2}$.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $ilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|ec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{ ilde{y}}\|_2^2] = \|ec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

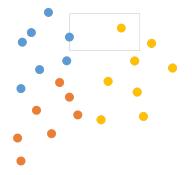
Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with m degrees of freedom,

 $\Pr\left[|\mathsf{Z} - \mathbb{E}\mathsf{Z}| \ge \epsilon \mathbb{E}\mathsf{Z}\right] \le 2e^{-m\epsilon^2/8}.$

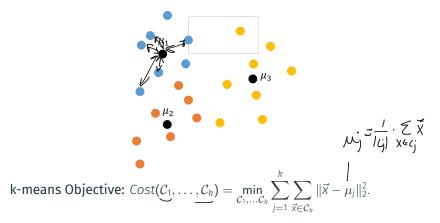
If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$: $(1 - \epsilon) \|\vec{y}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon) \|\vec{y}\|_2^2$.

Gives the distributional JL Lemma and thus the classic JL Lemma!

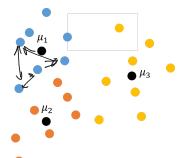
Goal: Separate *n* points in *d* dimensional space into *k* groups.



Goal: Separate *n* points in *d* dimensional space into *k* groups.



Goal: Separate n points in d dimensional space into k groups.



k-means Objective: $Cost(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1}^{\kappa} \sum_{\vec{x} \in C_k} \|\vec{x} - \mu_j\|_2^2.$

Write in terms of distances: $Cost(\mathcal{C}_1, \dots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \dots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$

k-means Objective:
$$Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$

k-means Objective:
$$Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1-\epsilon)\|\vec{x}_{1}-\vec{x}_{2}\|_{2}^{2} \leq \|\tilde{\mathbf{x}}_{1}-\tilde{\mathbf{x}}_{2}\|_{2}^{2} \leq (1+\epsilon)\|\vec{x}_{1}-\vec{x}_{2}\|_{2}^{2}$$

k-means Objective:
$$Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1-\epsilon)\|\vec{x}_{1}-\vec{x}_{2}\|_{2}^{2} \leq \|\tilde{\mathbf{x}}_{1}-\tilde{\mathbf{x}}_{2}\|_{2}^{2} \leq (1+\epsilon)\|\vec{x}_{1}-\vec{x}_{2}\|_{2}^{2} \Longrightarrow$$
Letting $\overline{Cost}(\mathcal{C}_{1},\ldots,\mathcal{C}_{k}) = \min_{\mathcal{C}_{1},\ldots,\mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\tilde{\mathbf{x}}_{1},\tilde{\mathbf{x}}_{2}\in\mathcal{C}_{k}} \|\tilde{\mathbf{x}}_{1}-\tilde{\mathbf{x}}_{2}\|_{2}^{2} \not\leq |\mathbf{x}_{1}-\mathbf{x}_{2}|_{2}^{2}$

$$(1-\epsilon)Cost(\mathcal{C}_{1},\ldots,\mathcal{C}_{k}) \leq \overline{Cost}(\mathcal{C}_{1},\ldots,\mathcal{C}_{k}) \leq (1+\epsilon)Cost(\mathcal{C}_{1},\ldots,\mathcal{C}_{k}).$$

k-means Objective:
$$Cost(\mathcal{C}_{1}, \dots, \mathcal{C}_{k}) = \min_{\mathcal{C}_{1},\dots,\mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1},\vec{x}_{2}\in\mathcal{C}_{k}} \|\vec{x}_{1} - \vec{x}_{2}\|_{2}^{2}$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions, for all pairs $\vec{x}_{1}, \vec{x}_{2},$
 $(1 - \epsilon)\|\vec{x}_{1} - \vec{x}_{2}\|_{2}^{2} \leq \|\tilde{\mathbf{x}}_{1} - \tilde{\mathbf{x}}_{2}\|_{2}^{2} \leq (1 + \epsilon)\|\vec{x}_{1} - \vec{x}_{2}\|_{2}^{2} \Longrightarrow$
Letting $\overline{Cost}(\mathcal{C}_{1},\dots,\mathcal{C}_{k}) = \min_{\mathcal{C}_{1},\dots,\mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1},\vec{x}_{2}\in\mathcal{C}_{k}} \|\tilde{\mathbf{x}}_{1} - \tilde{\mathbf{x}}_{2}\|_{2}^{2}$
 $(1 - \epsilon)Cost(\mathcal{C}_{1},\dots,\mathcal{C}_{k}) \leq \overline{Cost}(\mathcal{C}_{1},\dots,\mathcal{C}_{k}) \leq (1 + \epsilon)Cost(\mathcal{C}_{1},\dots,\mathcal{C}_{k}).$

Upshot: Can cluster in *m* dimensional space (much more efficiently) and minimize $\overline{Cost}(C_1, \ldots, C_k)$. The optimal set of clusters will have true cost within $1 + c\epsilon$ times the true optimal. Good exercise to prove this.