
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 11

1



Logistics

• Problem Set 2 is due Friday at 11:59pm.
• My office hours today are in  LGRC A104A.
• The midterm exam is next Thursday 7-9pm.
• I will hold review sessions on Tuesday, Wednesday, and
Thursday in class. See Piazza for details on times and on
midterm review material.

• If you need extended time on the exam, you should have
received an email from me. Reach out if you have not.

2



Summary

Last Class: Similarity Search and LSH

• Fast similarity search via locality sensitive hashing.

• Jaccard similarity and MinHashing for Jaccard LSH.

This Class:

• Finish up LSH – SimHash for cosine similarity.

• Start on randomized methods for compressing high
dimensional data.

• Low-distortion embeddings and the Johnson-Lindenstraus (JL)
Lemma.

3



Hashing for Duplicate Detection

All different variants of detecting duplicates/finding matches
in large datasets. An important problem in many contexts.

4



Balancing LSH Hit Rate and Query Time

In similarity search with LSH, we use repetition to balance a small
probability of false negatives (a high hit rate) with a small probability
of false positives (a small query time.)

Create t hash tables. Each is indexed into not with a single MinHash
value, but with a length-r signature of values, appended together.

5



The s-curve

Using t repetitions each with a signature of r hash values, the
probability that x and y with collision probability Pr[h(x) = h(y)] = s
match in at least one repetition is: 1− (1− sr)t.

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 P

ro
b
a
b
ili

ty

r = 5, t = 10

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 P

ro
b
a
b
ili

ty

r = 10, t = 10

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 P

ro
b
a
b
ili

ty

r = 5, t = 30

6



Generalizing Locality Sensitive Hashing

Repetition and s-curve tuning can be used for fast similarity search
with any similarity metric, given a locality sensitive hash function for
that metric.

• LSH schemes exist for many similarity/distance measures:
hamming distance, cosine similarity, etc.

Cosine Similarity: cos(θ(x, y)) = ⟨x,y⟩
∥x∥2·∥y∥2

.

• cos(θ(x, y)) = 1 when θ(x, y) = 0◦ and cos(θ(x, y)) = 0 when
θ(x, y) = 90◦, and cos(θ(x, y)) = −1 when θ(x, y) = 180◦

7



SimHash for Cosine Similarity

SimHash Algorithm: LSH for cosine similarity.

SimHash(x) = sign(⟨x, t⟩) for a random vector t.
8



SimHash for Cosine Similarity

What is Pr [SimHash(x) = SimHash(y)]?

SimHash(x) ̸= SimHash(y) when the plane separates x from y.

• Pr [SimHash(x) ̸= SimHash(y)] = θ(x,y)
π

• Pr [SimHash(x) = SimHash(y)] = 1− θ(x,y)
π ≈ cos(θ(x,y))+1

2 9



Questions on MinHash and Locality Sensitive Hashing?

10



High Dimensional Data

‘Big Data’ means not just many data points, but many measurements
per data point. I.e., very high dimensional data.

• Twitter has 321 million active monthly users. Records (tens of)
thousands of measurements per user: who they follow, who
follows them, when they last visited the site, timestamps for
specific interactions, how many tweets they have sent, the text
of those tweets, etc.

• A 3 minute Youtube clip with a resolution of 500× 500 pixels at
15 frames/second with 3 color channels is a recording of ≥ 2
billion pixel values. Even a 500× 500 pixel color image has
750, 000 pixel values.

• The human genome contains 3 billion+ base pairs. Genetic
datasets often contain information on 100s of thousands+
mutations and genetic markers.

11



Data as Vectors and Matrices

In data analysis and machine learning, data points with many
attributes are often stored, processed, and interpreted as high
dimensional vectors, with real valued entries.

Similarities/distances between vectors
(e.g., ⟨x, y⟩, ∥x− y∥2) have meaning for
underlying data points.

12



Datasets as Vectors and Matrices

Data points are interpreted as high dimensional vectors, with real
valued entries. Data set is interpreted as a matrix.

Data Points: x⃗1, x⃗2, . . . , x⃗n ∈ Rd.

Data Set: X ∈ Rn×d with ith row equal to x⃗Ti .

Many data points n =⇒ tall. Many dimensions d =⇒ wide.

13



Dimensionality Reduction

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.

x⃗1, . . . , x⃗n ∈ Rd → x̃1, . . . , x̃n ∈ Rm for m ≪ d.

‘Lossy compression’ that still preserves important information about
the relationships between x⃗1, . . . , x⃗n.

Generally will not consider directly how well x̃i approximates x⃗i. 14



Dimensionality Reduction

Dimensionality reduction is one of the most important techniques in
data science. What methods have you heard of?

• Principal component analysis

• Latent semantic analysis (LSA)

• Linear discriminant analysis

• Autoencoders

Compressing data makes it more efficient to work with. May also
remove extraneous information/noise. 15



Embeddings for Euclidean Space

Euclidean Low Distortion Embedding: Given x⃗1, . . . , x⃗n ∈ Rd and error
parameter ϵ ≥ 0, find x̃1, . . . , x̃n ∈ Rm (where m ≪ d) such that for all
i, j ∈ [n]:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

Recall that for z⃗ ∈ Rn, ∥⃗z∥2 =
√∑n

i=1 z⃗(i)2.

Can use x̃1, . . . , x̃n in place of x⃗1, . . . , x⃗n in clustering, SVM, linear
classification, near neighbor search, etc.

16



The Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma tells us that for any set of
points x⃗1, . . . , x⃗n ∈ Rd and any ϵ > 0, we can find an
ϵ-distortion embedding into m dimensions, where m depends
only on the error parameter ϵ and the number of points n, but
not the original dimension d.

17



The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points
x⃗1, . . . , x⃗n ∈ Rd and ϵ > 0 there exists a linear mapΠ : Rd → Rm

such that m = O
(

log n
ϵ2

)
and letting x̃i = Πx⃗i:

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

Further, if Π ∈ Rm×d has each entry chosen i.i.d. from
N (0, 1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, ϵ = .05, and n = 100, 000, m ≈ 6600.

Very surprising! Powerful result with a simple construction: applying
a random linear transformation to a set of points preserves
distances between all those points with high probability.

18



Random Projection

For any x⃗1, . . . , x⃗n and Π ∈ Rm×d with each entry chosen i.i.d. from
N (0, 1/m), with high probability, letting x̃i = Πx⃗i:

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

• Π is known as a random projection. It is a random linear
function, mapping length d vectors to length m vectors.

• Π is data oblivious. Stark contrast to methods like PCA.
19



Algorithmic Considerations

• Many alternative constructions: ±1 entries, sparse (most
entries 0), Fourier structured, etc. =⇒ more efficient
computation of x̃i = Πx⃗i.

• Data oblivious property means that once Π is chosen,
x̃1, . . . , x̃n can be computed in a stream with little memory.

• Memory needed is just O(d+ nm) vs. O(nd) to store the
full data set.

• Compression can also be easily performed in parallel on
different servers.

• When new data points are added, can be easily
compressed, without updating existing points.

20


