COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 6

Logistics

- Problem Set 1 is due tomorrow at 11:59pm in Gradescope.
- Quiz 3 is due Monday at 8pm.

Last Time

Last Class:

- Higher moment bounds and exponential concentration bounds
- Bernstein inequality

This Class:

- Connection between exponential concentration bounds and the central limit theorem.
- The Chernoff bound.
- Bloom filters: random hashing to maintain a large set in small space.

Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ falling in $[-1,1]$. Let $\mu=\mathbb{E}\left[\sum \mathrm{X}_{i}\right]$, $\sigma^{2}=\operatorname{Var}\left[\sum \mathrm{X}_{\mathrm{i}}\right]$, and $\mathrm{s} \leq \sigma$. Then:

$$
\left[\operatorname{Pr}\left(\left|\sum_{i=1}^{n} x_{i}-\mu\right| \geq s \sigma\right) \leq 2 \underline{\exp \left(-\frac{s^{2}}{4}\right)} \cdot \underline{ } \quad \frac{1}{s^{2}}\right.
$$

Can plot this bound for different s:

Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ falling in $[-1,1]$. Let $\mu=\mathbb{E}\left[\sum \mathrm{X}_{\mathrm{i}}\right]$, $\sigma^{2}=\operatorname{Var}\left[\sum \mathrm{X}_{\mathrm{i}}\right]$, and $\mathrm{s} \leq \sigma$. Then:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{X}_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right) .
$$

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ falling in $[-1,1]$. Let $\mu=\mathbb{E}\left[\sum \mathrm{X}_{\mathrm{i}}\right]$, $\sigma^{2}=\operatorname{Var}\left[\sum X_{i}\right]$, and $s \leq \underline{\sigma}$. Then:

$$
\operatorname{Pr}\left(\underline{\left|\sum_{i=1}^{n} \mathrm{x}_{i}-\mu\right| \geq s \sigma}\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right) .
$$

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

$$
\mathcal{N}\left(0, \sigma^{2}\right) \text { has density } \underline{p(s \sigma)}=\frac{1}{\underline{\sqrt{2 \pi \sigma^{2}}} \cdot \underline{e^{-\frac{s^{2}}{2}}} .}
$$

Gaussian Tails

$\mathcal{N}\left(0, \sigma^{2}\right)$ has density $p(S \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{s^{2}}{2}}$.

Gaussian Tails

$$
\mathcal{N}\left(0, \sigma^{2}\right) \text { has density } p(S \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{s^{2}}{2}}
$$

Exercise: Using this can show that for $\mathrm{X} \sim \mathcal{N}\left(0, \sigma^{2}\right)$: for any $s \geqq 0$,

$$
\operatorname{Pr}(|\mathrm{X}| \geq s \cdot \sigma) \leq 2 e^{-\frac{5^{2}}{2}}
$$

Gaussian Tails

$$
\mathcal{N}\left(0, \sigma^{2}\right) \text { has density } p(s \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{s^{2}}{2}}
$$

Exercise: Using this can show that for $\mathrm{X} \sim \mathcal{N}\left(0, \sigma^{2}\right)$: for any $s \geq 0$,

$$
\operatorname{Pr}(|X| \geq s \cdot \sigma) \leq 2 e^{-\frac{s^{2}}{2}} . \quad 2 e^{-\frac{2}{} / 4}
$$

Essentially the same bound that Bernstein's inequality gives!

Gaussian Tails

$$
\mathcal{N}\left(0, \sigma^{2}\right) \text { has density } p(s \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{s^{2}}{2}} .
$$

Exercise: Using this can show that for $\mathrm{X} \sim \mathcal{N}\left(0, \sigma^{2}\right)$: for any $s \geq 0$,

$$
\operatorname{Pr}(|X| \geq s \cdot \sigma) \leq 2 e^{-\frac{s^{2}}{2}}
$$

Essentially the same bound that Bernstein's inequality gives!
Central Limit Theorem Interpretation: Bernstein's inequality gives a quantitative version of the CLT. The distribution of the sum of bounded independent random variables can be upper bounded with a Gaussian (normal) distribution.

Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity.

Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity.

- Why is the Gaussian distribution is so important in statistics, science, ML, etc.?

Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity.

- Why is the Gaussian distribution is so important in statistics, science, ML, etc.?
- Many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.

The Chernoff Bound

A useful variation of the Bernstein inequality for binary (indicator) random variables is:

Chernoff Bound (simplified version): Consider independent random variables $\underline{X_{1}, \ldots, X_{n}}$ taking values in $\{0,1\}$. Let $\mu=$ $\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]$. For any $\overline{\delta \geq 0}$
$\sum \mathbb{E} X_{i}$

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{x}_{i}-\mu\right| \geq \delta \mu\right) \leq 2 \underline{\exp }\left(-\frac{\delta^{2} \mu}{2+\delta}\right) .
$$

The Chernoff Bound

A useful variation of the Bernstein inequality for binary (indicator) random variables is:

Chernoff Bound (simplified version): Consider independent random variables X_{1}, \ldots, X_{n} taking values in $\{0,1\}$. Let $\mu=$ $\mathbb{E}\left[\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}\right]$. For any $\delta \geq 0$

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{X}_{i}-\mu\right| \geq \delta \mu\right) \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)
$$

As δ gets larger and larger, the bound falls of exponentially fast.

Return to Random Hashing

We hash m values x_{1}, \ldots, x_{m} using a random hash function into a table with $n=m$ entries.

Return to Random Hashing

We hash m values x_{1}, \ldots, x_{m} using a random hash function into a table with $n=m$ entries.

- I.e., for all $j \in[m]$ and $i \in[m], \operatorname{Pr}\left(\mathrm{h}\left(x_{j}\right)=i\right)=\frac{1}{m}$ and hash values are chosen independently.

Return to Random Hashing

We hash m values x_{1}, \ldots, x_{m} using a random hash function into a table with $n=m$ entries.

- I.e., for all $j \in[m]$ and $i \in[m], \operatorname{Pr}\left(\mathrm{h}\left(x_{j}\right)=i\right)=\frac{1}{m}$ and hash values are chosen independently.

What will be the maximum number of items hashed into the same location?

Maximum Load in Randomized Hashing

Let \mathbf{S}_{i} be the number of items hashed into position i and $\underline{S_{i, j}}$ be 1 if x_{j} is hashed into bucket $i\left(\mathrm{~h}\left(x_{j}\right)=i\right)$ and 0 otherwise.
m : total number of items hashed and size of hash table. x_{1}, \ldots, x_{m} : the items.
h : random hash function mapping $x_{1}, \ldots, x_{m} \rightarrow[m]$.

Maximum Load in Randomized Hashing

Let S_{i} be the number of items hashed into position i and $S_{i, j}$ be 1 if x_{j} is hashed into bucket $i\left(\mathrm{~h}\left(\mathrm{x}_{\mathrm{j}}\right)=i\right)$ and 0 otherwise.

$$
\underline{\mathbb{E}\left[S_{i}\right]}=\sum_{j=1}^{m} \mathbb{E}\left[S_{i, j}\right]=m \cdot \frac{1}{\underline{m}}=1
$$

m : total number of items hashed and size of hash table. x_{1}, \ldots, x_{m} : the items.
h : random hash function mapping $x_{1}, \ldots, x_{m} \rightarrow[m]$.

Maximum Load in Randomized Hashing

Let S_{i} be the number of items hashed into position i and $S_{i, j}$ be 1 if x_{j} is hashed into bucket $i\left(\mathrm{~h}\left(x_{j}\right)=i\right)$ and 0 otherwise.

$$
\mathbb{E}\left[\mathrm{S}_{i}\right]=\sum_{j=1}^{m} \mathbb{E}\left[\mathrm{~S}_{i, j}\right]=m \cdot \frac{1}{m}=\underline{\underline{1=\mu}}
$$

m : total number of items hashed and size of hash table. x_{1}, \ldots, x_{m} : the items.
h : random hash function mapping $x_{1}, \ldots, x_{m} \rightarrow[m]$.

Maximum Load in Randomized Hashing

Let S_{i} be the number of items hashed into position i and $S_{i, j}$ be 1 if x_{j} is hashed into bucket $i\left(\mathrm{~h}\left(\mathrm{x}_{\mathrm{j}}\right)=i\right)$ and 0 otherwise.

$$
\mathbb{E}\left[\underline{\left[S_{i}\right.}\right]=\sum_{j=1}^{m} \mathbb{E}\left[\underline{\mathrm{~S}_{i, j}}\right]=m \cdot \frac{1}{m}=1=\mu .
$$

$$
s=
$$

By the Chernoff Bound: for any $\delta \geq 0$,

$$
\operatorname{Pr}(\underline{\left.\left.S_{i}-1\right)+\delta\right)} \leq \operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{~S}_{i, j}-1\right| \geq \delta \cdot \mu\right) \leq \underbrace{2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)}
$$

m : total number of items hashed and size of hash table. x_{1}, \ldots, x_{m} : the items.
h : random hash function mapping $x_{1}, \ldots, x_{m} \rightarrow[m]$.

Maximum Load in Randomized Hashing

$$
\operatorname{Pr}\left(\mathrm{S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{~S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
$$

m : total number of items hashed and size of hash table. S_{i} : number of items hashed to bucket i. $S_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

Maximum Load in Randomized Hashing

$$
\begin{gathered}
\geq 20 \log m+1 \approx 20 \log n \\
\operatorname{Pr}\left(\mathrm{~S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{~S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
\end{gathered}
$$

Set $\delta=20 \log m$. Gives:
m : total number of items hashed and size of hash table. S_{i} : number of items hashed to bucket i. $S_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

Maximum Load in Randomized Hashing

$$
\operatorname{Pr}\left(\mathrm{S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{~S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
$$

Set $\delta=20 \log m$. Gives:

$$
\operatorname{Pr}\left(\mathrm{S}_{i} \geq 20 \log m+1\right) \leq 2 \underline{\exp }\left(-\frac{(20 \log m)^{2}}{2+20 \log m}\right)
$$

m : total number of items hashed and size of hash table. S_{i} : number of items hashed to bucket $i . \mathrm{S}_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

Maximum Load in Randomized Hashing

$$
\underline{\operatorname{Pr}\left(\mathrm{S}_{i} \geq 1+\delta\right)} \leq \operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{~S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
$$

$$
\begin{aligned}
& \text { Set } \delta=20 \log m \text {. Gives: } \\
& {[\begin{array}{l}
\operatorname{Pr}\left(\mathrm{S}_{i} \geq 20 \log m+1\right)
\end{array} \underbrace{2 \exp \left(-\frac{(20 \log m)^{2}}{2+20 \log m}\right)} \leq \frac{20^{2}}{2 \log m}(-18 \log m)}
\end{aligned} \frac{2}{m^{18}} .
$$

m : total number of items hashed and size of hash table. S_{i} : number of items hashed to bucket i. $\mathrm{S}_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

Maximum Load in Randomized Hashing

$$
\operatorname{Pr}\left(\mathrm{S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{~S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
$$

Set $\delta=20 \log m$. Gives:

$$
\xrightarrow{\operatorname{Pr}\left(S_{i} \geq 20 \log m+1\right)} \leq 2 \exp \left(-\frac{(20 \log m)^{2}}{2+20 \log m}\right) \leq \exp (-18 \log m) \leq \frac{2}{m^{18}}
$$

Apply Union Bound:
$\operatorname{Pr}\left(\max _{i \in[m]} \mathrm{S}_{i} \geq 20 \log m+1\right)=\operatorname{Pr}(\underbrace{m}_{i=1}\left(\mathrm{~S}_{i} \geq 20 \log m+1\right))$
m : total number of items hashed and size of hash table. S_{i} : number of items hashed to bucket i. $S_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

Maximum Load in Randomized Hashing

$$
\operatorname{Pr}\left(\mathrm{S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{~S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
$$

Set $\delta=20 \log m$. Gives:
$\operatorname{Pr}\left(\mathrm{S}_{i} \geq 20 \log m+1\right) \leq 2 \exp \left(-\frac{(20 \log m)^{2}}{2+20 \log m}\right) \leq \exp (-18 \log m) \leq \frac{2}{m^{18}}$.
Apply Union Bound:
$\operatorname{Pr}\left(\max _{i \in[m]} \mathrm{S}_{i} \geq \underline{20 \log m+1}\right)=\operatorname{Pr}\left(\bigcup_{i=1}^{m}\left(\mathrm{~S}_{i} \geq 20 \log m+1\right)\right)$

$$
\leq \sum_{i=1}^{m} \operatorname{Pr}\left(S_{i} \geq 20 \log m+1\right) \leq m \cdot \frac{2}{m^{18}}=\frac{2}{m^{17}}
$$

m : total number of items hashed and size of hash table. S_{i} : number of items hashed to bucket i. $\mathrm{S}_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

- So, even with a simple linked list to store the items in each bucket, worst case query time is $O(\log m)$.

Maximum Load in Randomized Hashing
Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

- So, even with a simple linked list to storethe items in each bucket, worst case query time is $O(\log m)$. - folly ind. Using Chebyshev's inequality could only show the maximum load is bounded by $O(\sqrt{m})$ with good probability (good exercise).

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

- So, even with a simple linked list to store the items in each bucket, worst case query time is $O(\log m)$.
- Using Chebyshev's inequality could only show the maximum load is bounded by $O(\sqrt{m})$ with good probability (good exercise).
- The Chebyshev bound holds even with a pairwise independent hash function. The stronger Chernoff-based bound can be shown to hold a k-wise independent hash function for $k=O(\log m)$.

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert (x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time.

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time. What data structure solves this problem?
Whash tebles

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time. What data structure solves this problem?

- Allow small probability $\delta>0$ of false positives. I.e., for any

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time. What data structure solves this problem?
$\sqrt{\left.\begin{array}{c}\text { Allow } \mathrm{s} \\ x, \\ \end{array}\right]}$

$$
\operatorname{Pr}(\text { query }(x)=1 \text { and } x \notin S) \leq \delta
$$

Solution: Bloom filters (repeated random hashing). Will use much less space than a hash table.

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

m bit array \mathbf{A}	0	0	0	0	0	0	0	0	0

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Insertions

m bit array \mathbf{A}| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Queries:

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Insertions: x

m bit array \mathbf{A}| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Queries:

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Queries:

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Queries:
X

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

No false negatives. False positives more likely with more insertions.

Applications: Caching

Akamai (Boston-based company serving $15-30 \%$ of all web traffic) applies bloom filters to prevent caching of ‘one-hit-wonders' - pages only visited once fill over 75% of cache.

Applications: Caching

Akamai (Boston-based company serving $15-30 \%$ of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' - pages only visited once fill over 75% of cache.

- When url x comes in, if query $(x)=1$, cache the page at x. If not, run insert(x) so that if it comes in again, it will be cached.

Applications: Caching

Akamai (Boston-based company serving $15-30 \%$ of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' - pages only visited once fill over 75% of cache.

- When url x comes in, if query $(x)=1$, cache the page at x. If not, run insert(x) so that if it comes in again, it will be cached.
- False positive: A new url (possible one-hit-wonder) is cached. If the bloom filter has a false positive rate of $\delta=.05$, the number of cached one-hit-wonders will be reduced by at least 95%.

Applications: Databases

Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.

Applications: Databases

Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.

Movies

Applications: Databases

Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.

Movies

- When a new rating is inserted for (user ${ }_{x}$, movie $_{y}$), add (user ${ }_{x}$, moviey) to a bloom filter.
- Before reading (user moviey $_{y}$) (possibly via an out of memory access), check the bloom filter, which is stored in memory.

Applications: Databases

Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.

Movies

- When a new rating is inserted for (user ${ }_{x}$, movie $_{y}$), add (user x, movie $_{y}$) to a bloom filter.
- Before reading (user x, moviey $_{y}$) (possibly via an out of memory access), check the bloom filter, which is stored in memory.
- False positive: A read is made to a possibly empty cell. A $\delta=.05$ false positive rate gives a $\underline{95 \%}$ reduction in these empty reads.

More Applications

- Database Joins: Quickly eliminate most keys in one column that don't correspond to keys in another.
- Recommendation systems: Bloom filters are used to prevent showing users the same recommendations twice.
- Spam/Fraud Detection:
- Bit.ly and Google Chrome use bloom filters to quickly check if a url maps to a flagged site and prevent a user from following it.
- Can be used to detect repeat clicks on the same ad from a single IP-address, which may be the result of fraud.
- Digital Currency: Some Bitcoin clients use bloom filters to quickly pare down the full transaction log to transactions involving bitcoin addresses that are relevant to them (SPV: simplified payment verification).

Analysis

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$.

Analysis

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Analysis

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\left(\frac{m-1}{m}\right)^{n k}
$$

Analysis

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ? $n \times k$ total hashes must not hit bit i.

$$
\operatorname{Pr} \underline{(A[i]=0)}=\operatorname{Pr}(\underbrace{h_{\underline{k}}\left(x_{1}\right) \neq i}_{\left.\left.\left.\cap \underline{h_{1}\left(x_{2}\right.}\right) \neq i \ldots \cap \cap \underline{h_{k}\left(x_{1}\right) \neq i \cap \ldots}\right) \neq i \cap \ldots\right)}
$$

Analysis

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ? $n \times k$ total hashes must not hit bit i.

$$
\begin{aligned}
\operatorname{Pr}(A[i]=0)= & \operatorname{Pr}\left(h_{1}\left(x_{1}\right) \neq i \cap \ldots \cap h_{k}\left(x_{k}\right) \neq i\right. \\
& \left.\cap h_{1}\left(x_{2}\right) \neq i \ldots \cap h_{k}\left(x_{2}\right) \neq i \cap \ldots\right) \\
= & \underbrace{\operatorname{Pr}\left(h_{1}\left(x_{1}\right) \neq i\right) \times \ldots \times \operatorname{Pr}\left(h_{k}\left(x_{1}\right) \neq i\right) \times \operatorname{Pr}\left(h_{1}\left(x_{2}\right) \neq i\right) \ldots}_{\underline{\text { k.n events each occuring with probability } 1-1 / m}}
\end{aligned}
$$

Analysis

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ? $n \times k$ total hashes must not hit bit i.

$$
\begin{aligned}
\underline{\operatorname{Pr}(A[i]=0)} & =\operatorname{Pr}\left(h_{1}\left(x_{1}\right) \neq i \cap \ldots \cap h_{k}\left(x_{k}\right) \neq i\right. \\
& \cap \underbrace{}_{k}\left(x_{2}\right) \neq i \ldots \cap h_{k}\left(x_{2}\right) \neq i \cap \ldots) \\
= & \underbrace{\operatorname{Pr}\left(h_{1}\left(x_{1}\right) \neq i\right) \times \ldots \times \operatorname{Pr}\left(h_{k}\left(x_{1}\right) \neq i\right) \times \operatorname{Pr}\left(h_{1}\left(x_{2}\right) \neq i\right) \ldots}_{k \cdot n \text { events each occuring with probability } 1-1 / m} \\
= & \underbrace{\left(1-\frac{1}{m}\right)^{k n}}
\end{aligned}
$$

Analysis

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

Analysis

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

Analysis

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

Step 2: What is the probability that querying a new item w gives a false positive?
n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $\boldsymbol{h}_{1}, \ldots \boldsymbol{h}_{k}$: hash functions, A : bit array, δ : false positive rate.

Analysis

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$
\begin{aligned}
\operatorname{Pr}\left(A\left[h_{1}(w)\right]\right. & \left.=\ldots=A\left[h_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[h_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[h_{k}(w)\right]=1\right)
\end{aligned}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

Analysis

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$
\begin{aligned}
\operatorname{Pr}\left(A\left[h_{1}(w)\right]\right. & \left.=\ldots=A\left[h_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[h_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[h_{k}(w)\right]=1\right) \\
& =\left(1-e^{-\frac{k n}{m}}\right)^{k}
\end{aligned}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

Analysis

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$
\begin{aligned}
\operatorname{Pr}\left(A\left[h_{1}(w)\right]\right. & \left.=\ldots=A\left[h_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[h_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[h_{k}(w)\right]=1\right) \\
& =\left(1-e^{-\frac{k n}{m}}\right)^{k} \quad \text { Actually Incorrect! }
\end{aligned}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

Analysis

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$
\begin{aligned}
\operatorname{Pr}\left(A\left[h_{1}(w)\right]\right. & \left.=\ldots=A\left[h_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[h_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[h_{k}(w)\right]=1\right) \\
& =\left(1-e^{-\frac{k n}{m}}\right)^{k} \quad \text { Actually Incorrect! Dependent events. }
\end{aligned}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

