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- Problem Set 1is due tomorrow at 11:59pm in Gradescope.
- Quiz 3 is due Monday at 8pm.



Last Class:

- Higher moment bounds and exponential concentration bounds

- Bernstein inequality
This Class:

- Connection between exponential concentration bounds and the
central limit theorem.
- The Chernoff bound.

- Bloom filters: random hashing to maintain a large set in small
space.



Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o = Var[>_X], and s < o. Then: -
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Looks a lot like a Gaussian (normal) distribution.
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Essentially the same bound that Bernstein’s inequality gives!
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N(0,0?) has density p(so) = =— - e~

Exercise: Using this can show that for X ~ A(0, o?): for any s > 0,
s2
Pr(|X| >s-0) <2e7.
Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein's inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.
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Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.
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Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.
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- Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

- Many random variables can be approximated as the sum of a
large number of small and roughly independent random effects.
Thus, their distribution looks Gaussian by CLT.



The Chernoff Bound

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent

random variables Xy, ..., X, taking values in {0,1}. Let p =
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The Chernoff Bound

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables Xy, ..., X, taking values in {0,1}. Let p =

E[>",X]. Forany s >0
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Return to Random Hashing
Hash Table

128-bit IP addresses
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We hash m values x;, ..., X, using a random hash function into

a table with n = m entries.
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Return to Random Hashing

128-bit IP addresses Hash Table
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h( 16582616 ) =1590

172.16.256.1

A WN R

192.168.134

16.58.26.164.

We hash m values x;, ..., X, using a random hash function into
a table with n = m entries.

- le, forallj € [m] and i € [m], Pr(h(x)) = i) = -~ and hash
values are chosen independently.

What will be the maximum number of items hashed into the
same location?



Maximum Load in Randomized Hashing

Let S; be the number of items hashed.into position i and S,J be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m: total number of items hashed and size of hash table. xq, ..., Xm: the items.
h: random hash function mapping xi, .. ., Xm — [m].
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Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S; ; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.
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hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.
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high probability.

e
- So, even with a simple linked list to store"the items in

i ) -/1()3 \f\)~
each bucket, worst case query time is O(log m).

Using Chebyshev's inequality could only show the

maxmurT\{)ad is bounded byp_(@ Wlt\ﬁgood
lity (

obabi good exercise).

PO\/ wtSe N 2’/\}(‘}\[&50\1

1



Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in
each bucket, worst case query time is O(log m).
Voe )

- Using Chebyshev's inequality could only show the
maximum load is bounded by O(v/m) with good
probability (good exercise).

- The Chebyshev bound holds even with a pairwise
independent hash function‘Ee stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(log m

1



Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).
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Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

- Allow small probability § > 0 of false positives. l.e, for any
X

’

Pr(query(x) =1and x ¢ S) <.

Solution: Bloom filters (repeated random hashing). Will use

much less space than a hash table.
f
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Bloom Filters

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m]. -
-(/I\ﬁaintain an array A containing m bits, all initially 0.
- insert(x): setall bits A[hi(X)] = ... = Alhp(x)] := 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
- —_— ’—\
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Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhx(x

- Insertions: x y O &@
+

\5 m bit array &_/1 1 0 0 1

v

Queries: X w ¥

No false negatives. False positives more likely with more insertions.
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Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages

.. -_—
only visited once fill over 75% of cache.
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- When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.
-
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Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.

g 100
§ 12000
g

2 10000

% 2000 —Bloom filter ———J»

a8 o turned on
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

- When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

- False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of § = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.
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Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.
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- When a new rating is inserted for (usery, moviey), add
(usery, moviey) to a bloom filter.

- Before reading (user.,movie,) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.
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Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 1|4

Users

1 2

- When a new rating is inserted for (usery, moviey), add
(usery, moviey) to a bloom filter.

- Before reading (usery, movie,) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

- False positive: A read is made to a possibly empty cell. A§ = .05
false positive rate gives a 95% reduction in these empty reads.
—_—
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More Applications

- Database Joins: Quickly eliminate most keys in one column that
don't correspond to keys in another.

- Recommendation systems: Bloom filters are used to prevent
showing users the same recommendations twice.

- Spam/Fraud Detection:

- Bit.ly and Google Chrome use bloom filters to quickly check
if a url maps to a flagged site and prevent a user from
following it.

- Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

- Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions
involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).
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For a bloom filter with m bits and k hash functions, the insertion and

query time iLO(Q
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Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0? x
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For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate § depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?7 n x k total hashes must not hit bit /.
Pr(Alil = 0) = Pr (hy(xq) £ in...nh(x) #1i
\—/ — . - .
ﬂhj(Xz);ﬁI...ﬂhfg(Xﬂ#lﬂ...)

_— —_
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