COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2022.
Lecture 6



- Problem Set 1is due tomorrow at 11:59pm in Gradescope.
- Quiz 3 is due Monday at 8pm.



Last Class:

- Higher moment bounds and exponential concentration bounds

- Bernstein inequality
This Class:

- Connection between exponential concentration bounds and the
central limit theorem.
- The Chernoff bound.

- Bloom filters: random hashing to maintain a large set in small
space.



Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o = Var[>_X], and s < o. Then: -

n 2 |
S /f/
L > < _2
( Pr(é X ,u50>2exp( 4). 5
= —— A

Can plot this bound for different s:

N



Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? = Var[>_X]], and s < 0. Then:

2
Pr >5so | <2exp (—4).

n
in — K
=1
Can plot this bound for different s:

N

Looks a lot like a Gaussian (normal) distribution.



Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
— dom variables Xi,...,X, falling in [-11]. Let u = E[> X,
o? = Var[>_X]], and s < 0. Then:
| Y

_l,

n — 2
Pr < ZX;—,M >Sa> §\2\exp! —Z) .
i=1;_

Can plot this bound for different s:

N

Looks a lot like a Gaussian (normal) distribution.

N(0,0?%) has density p(so) = ¢2172 e- % ,
- VITO =




N(0,0?%) has density p(so) = ——— - e~



NS

N(0,0?%) has density p(so) = ——— - e~

2mwo?
Exercise: Using this can show that for X ~ N(O o?): forany s >0,

Pr(X| >s-0) <2e” $

AN




NS

N(0,0?%) has density p(so) = ——— - e~

2mwo?

Exercise: Using this can show that for X ~ A/(0,0?): forany s > 0,
1

2 =34

Pr(IX| >s-0) <2e77. Qe

Essentially the same bound that Bernstein’s inequality gives!



NS

N(0,0?) has density p(so) = =— - e~

Exercise: Using this can show that for X ~ A(0, o?): for any s > 0,
s2
Pr(|X| >s-0) <2e7.
Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein's inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.

45 48 51 54
Means



Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.

70|
60|
50|
c
$ 9
5
3 30|
LT 20}
10|

0
39 42 45 48 51 54 57 6.0

Means

x|



Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.

70|
60|
50|
c
$ 9
5
3 30|
LT 20}
10|

0
39 42 45 48 51 54 57 6.0

Means

x|

- Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?



Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.

70)
60|
50|
c
$ 4ol
=
930
LT 20|
10}
o k3
39 42 45 48 51 54 57 60
Means

- Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

- Many random variables can be approximated as the sum of a
large number of small and roughly independent random effects.
Thus, their distribution looks Gaussian by CLT.



The Chernoff Bound

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent

random variables Xy, ..., X, taking values in {0,1}. Let p =
n B ———— —_— -

E[> ;_,X]. Forany 4 >0

_yg —_—

— . n %
ZE% X — | > 0p ) < 2exp [~ 2L
|2 2| <2ee 55y )

~—
 —




The Chernoff Bound

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables Xy, ..., X, taking values in {0,1}. Let p =

E[>",X]. Forany s >0
2
> 5u> < 2exp (— 26_’_”5) .

Pr (
As § gets larger and larger, the bound falls of exponentially fast.

n
ZX/' —
i=1

\.




Return to Random Hashing
Hash Table

128-bit IP addresses

172.16.256.1

A WN R

192.168.134

h( 16582616 ) =1590

16.58.26.164

We hash m values x;, ..., X, using a random hash function into

a table with n = m entries.

—



Return to Random Hashing

128-bit IP addresses Hash Table

=1
ol 72162542 ) i
\”x
A
52
K @‘w |——
o .

h( 16582616 ) =1590

172.16.256.1

AWN R

192.168.134

16.58.26.164

We hash m values x;, ..., X, using a random hash function into
a table with n = m entries.

- le, forallj e [m]andie [m], Pr(h(x;) = 1 and hash

I
values are chosen independently. \ﬂ vQQJP,\Lﬂ/



Return to Random Hashing

128-bit IP addresses Hash Table
-1

o s )
>
2
‘\9,‘\@:\
Q

h( 16582616 ) =1590

172.16.256.1

A WN R

192.168.134

16.58.26.164.

We hash m values x;, ..., X, using a random hash function into
a table with n = m entries.

- le, forallj € [m] and i € [m], Pr(h(x)) = i) = -~ and hash
values are chosen independently.

What will be the maximum number of items hashed into the
same location?



Maximum Load in Randomized Hashing

Let S; be the number of items hashed.into position i and S,J be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m: total number of items hashed and size of hash table. xq, ..., Xm: the items.
h: random hash function mapping xi, .. ., Xm — [m].




Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S; ; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

Y Qe 1
E[s] = ZE{S/J J=m-—=1
J=1 —
m: total number of items hashed and size of hash table. xq, ..., Xm: the items.
h: random hash function mapping xi, .. ., Xm — [m].




Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S; ; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m
1
E[S] = E;E[Su] =m-—=1=p.
J:
m: total number of items hashed and size of hash table. xq, ..., Xm: the items.

h: random hash function mapping xi, .. ., Xm — [m].




Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S; ; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

o o m : g‘)igfs\j
]E[s._"]:ZE[_SQ]:m'E:1:N~
j=1

By the Chernoff Bound: for any § > 0,

[4j] 62
DS >5-u><2e><p<—2 5)
i=1 T~ +

—

Pr(S; @—i— 0) < Pr (

m: total number of items hashed and size of hash table. xq, ..., Xm: the items.
h: random hash function mapping xi, .. ., Xm — [m].




Maximum Load in Randomized Hashing

n
Zs,—rw

Pr(Si>1+9) < Pr(
i=1

62
>0 §2exp(2+§>.

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.




Maximum Load in Randomized Hashing

?'),B\Ogﬂ ¥y ~ '\,r\)b\bo\'\,-

Pr(S;>1+06) <Pr{|) S, —1
i=1

62
>0 §2exp(2+§>.

Set § = 20log m. Gives:

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.




Maximum Load in Randomized Hashing

n
Zs,—rw

Pr(Si>1+9) < Pr(
i=1

62
>0 <2 — .
> 5] < exp( 2+§>
Set § = 20log m. Gives:

(20 log m)?
Pr(S; > 201 1N <2 —_—
(5,2 20logm +1) < eﬁ( 2+ 20log m

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.




Maximum Load in Randomized Hashing

i

Pr(S/ZT+5)§Pr<

62
-1 >d) <2 ( — .
i=1 - R WP §>
Set § = 20log m. Gives: 1,\)‘

Pr(S; > 20logm + 1) < 2ex (2010 %\ Dexp( -ﬂ:|8|0 m)<i
—’*§L‘ - P " 2+420logm ..%— - mwe
W

——

L—L\_’-’ W\A\
b U'ﬁgm

L X(P( *D'\S >—2W

(—@ﬂf\

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.




Maximum Load in Randomized Hashing

n
Zs,—rw

Pr(Si>1+9) < Pr(
i=1

62
>0 §2exp(2+§>.

~ (20log m)?
2+ 20logm

Set § = 20log m. Gives:

Pr(S; > 20logm + 1) <2exp<
—_— =

2
) < exp(—18logm) < %

—_—

Apply Union Bound:

m
Pr(maxS; > 20logm + 1) = Pr (U(S,- > 20logm + 1))
ie[m] _

,V\

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.




Maximum Load in Randomized Hashing

n
Zs,—rw

Pr(Si>1+9) < Pr(
i=1

62
>0 §2exp(2+§>.

~ (20log m)?
2+ 20logm

Set § = 20log m. Gives:
Pr(Si > 20logm +1) < 2exp (

Apply Union Bound:

m
Pr(maxS; > 20logm + 1) = Pr (U(S,- > 20logm + 1))
/E[m] B

=1
m

2
<D Pr(S; = 20logm+ 1) <m- g =
=1

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.

2
) < exp(—18logm) < %



Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very

. .- \
high probability.

1



Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in
each bucket, worst case query time is O(log m).

1



Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

e
- So, even with a simple linked list to store"the items in

i ) -/1()3 \f\)~
each bucket, worst case query time is O(log m).

Using Chebyshev's inequality could only show the

maxmurT\{)ad is bounded byp_(@ Wlt\ﬁgood
lity (

obabi good exercise).

PO\/ wtSe N 2’/\}(‘}\[&50\1

1



Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in
each bucket, worst case query time is O(log m).
Voe )

- Using Chebyshev's inequality could only show the
maximum load is bounded by O(v/m) with good
probability (good exercise).

- The Chebyshev bound holds even with a pairwise
independent hash function‘Ee stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(log m

1



Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

12



Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time.

12



Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

12



Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

- Allow small probability § > 0 of false positives. l.e, for any
AR,

( Q*’rg

< 0.
S—

Pr(query(x) =1and x ¢ S)
_—

12



Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

- Allow small probability § > 0 of false positives. l.e, for any
X

’

Pr(query(x) =1and x ¢ S) <.

Solution: Bloom filters (repeated random hashing). Will use

much less space than a hash table.
f

12



Bloom Filters

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m]. -
-(/I\ﬁaintain an array A containing m bits, all initially 0.
- insert(x): setall bits A[hi(X)] = ... = Alhp(x)] := 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
- —_— ’—\

13



Bloom Filters

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): setall bits A[hi(X)] = ... = Alhp(X)] := 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.

m bitarray A| 0 0 0 0 0 0 0 0 0 0

13



Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
Insertions

m bitarray A| 0 0 0 0 0 0 0 0 0 0

Queries:

13



Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhg(x)] = 1.

Insertions: X

m bitarray A| 0 0 0 0 0 0 0 0 0 0

Queries:

13



Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhg(x)] = 1.

Insertions: X

hy(x)

m bitarray A| 1 0 0 0 0 0 0 0 0 0

Queries:

13



Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1 only if A[h(X)] = ... = Alhg(X)] =
Insertions:
m bitarray A| 1 0 0 0 0 0 0
Queries:

13



Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m]. 3

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhg(x)] = 1.

Insertions: X

m bitarray A| 1 0 0 0 1 0 0 0 1 0

Queries:

13



Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhg(x)] = 1.

Insertions: X

m bitarray A| 1 0 0 0 1 0 0 0 1 0

Queries: X

13



Bloom Filters

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): setall bits A[hi(X)] = ... = Alhp(X)] := 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.

Insertions: X

m bitarray A| 1 0 0 0 1 0 0 0 1 0

Queries: X

13



Bloom Filters

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m]. -

- Maintain an array A containing m bits, all initially 0.

- insert(x): setall bits A[hi(X)] = ... = Alhp(X)] := 1.
- query(x): return Tonly if Alh1(X)] = ... = A[h(X)] =
Insertions:
m bitarray A| 1 0 0 0 0 1 0
\/7
Queries: X

13



Bloom Filters

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): setall bits A[hi(X)] = ... = Alhp(X)] := 1.
- query(x): return Tonly if Alh1(X)] = ... = A[h(X)] =
Insertions:
m bitarray A| 1 0 0 0 0 1 0
\«/
Queries: X

13



Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
Insertions: X y

mbitarayA]l 2 1| 0o | 0 1)0 101 o0

v

Queries: X

13



Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
Insertions: X y

m bitarray A| 1 (m 0 0 @ 0 @ 0 1 0

v
X

w

Queries: —w

13



Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
Insertions: X y

—

off1 )0 |1
v \n\(\ﬂ )%
X w

m bit array A( 1 1 0

Queries:

13



Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
Insertions: X y

m bitarray A| 1 1 0 0 1 0 1 0 1 0

AV

w

Queries:

13



Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhx(x

- Insertions: x y O &@
+

\5 m bit array &_/1 1 0 0 1

v

Queries: X w ¥

No false negatives. False positives more likely with more insertions.
—_— - _— 13



Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages

.. -_—
only visited once fill over 75% of cache.

o < oioombter 3]

B turned on

0
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

14



Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.

g 100
§ 12000
g

2 10000

% 2000 4—— Bloom filter ——3p»

a8 o turned on
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

- When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.
-

14



Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.

g 100
§ 12000
g

2 10000

% 2000 —Bloom filter ———J»

a8 o turned on
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

- When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

- False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of § = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.

14



Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

15



Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 1|4

Users

15



Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 1|4

Users

1 2

- When a new rating is inserted for (usery, moviey), add
(usery, moviey) to a bloom filter.

- Before reading (user.,movie,) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

15



Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 1|4

Users

1 2

- When a new rating is inserted for (usery, moviey), add
(usery, moviey) to a bloom filter.

- Before reading (usery, movie,) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

- False positive: A read is made to a possibly empty cell. A§ = .05
false positive rate gives a 95% reduction in these empty reads.
—_—

15



More Applications

- Database Joins: Quickly eliminate most keys in one column that
don't correspond to keys in another.

- Recommendation systems: Bloom filters are used to prevent
showing users the same recommendations twice.

- Spam/Fraud Detection:

- Bit.ly and Google Chrome use bloom filters to quickly check
if a url maps to a flagged site and prevent a user from
following it.

- Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

- Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions
involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).

16



For a bloom filter with m bits and k hash functions, the insertion and

query time iLO(Q

17



For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate § depend on m,
k, and the number of items inserted?

17



For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate § depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0? x
\

k
[V \ ds\d I ﬁ>

17



For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate § depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?7 n x k total hashes must not hit bit /.
Pr(Alil = 0) = Pr (hy(xq) £ in...nh(x) #1i
\—/ — . - .
ﬂhj(Xz);ﬁI...ﬂhfg(Xﬂ#lﬂ...)

_— —_

17



For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate § depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?7 n x k total hashes must not hit bit /.

Pr(All] = 0) = Pr (N1(x)) # 11 (1 ha(xe) # i
ﬂhj(Xz);ﬁi...ﬂhk(Xz)#iﬂ...>
= Pr (hi(a) £ 1) x ... x Pr (he(x) £ 1) x Pr(hi(x2) £1) ...

k-n events each occuring with probability 1-1/m
— —_—

17



For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate § depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?7 n x k total hashes must not hit bit /.

Pr(All] = 0) = Pr (h1(x)) #1111 ha(xe) # i
ﬂhj(Xz);ﬁi...ﬂhk(Xz)#iﬂ...>
= Pr (hi(a) £ 1) x ... x Pr (he(x) £ 1) x Pr(hi(x2) £1) ...

k-n events each occuring with probability 1—1/m

17



How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

Pr(All] = 0) = (1 - ;})m

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 18




How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

Pr(Ai] = 0) = (1 - ;})m ~e

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 18




How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

Pr(al = 0) = (1- “)m N

m

Step 2: What is the probability that querying a new item w gives a
false positive?

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 18




How does the false positive rate § depend on m, k, and the number
of items inserted?
Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

1 kn

Pr(al = 0) = (1- )m N

m
Step 2: What is the probability that querying a new item w gives a
false positive?
Pr(Alhy(w)] = ... =Alhp(w)] =1)
= Pr(A[h1(w)] = 1) x ... x Pr(Alhp(w)] = 1)

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 18




How does the false positive rate § depend on m, k, and the number
of items inserted?
Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

1 kn

Pr(al = 0) = (1- )m N

m

Step 2: What is the probability that querying a new item w gives a
false positive?
Pr(Alhy(w)] = ... =Alhp(w)] =1)
= Pr(A[h1(w)] = 1) x ... x Pr(Alhp(w)] = 1)

kn k
-(-%)

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 18




How does the false positive rate § depend on m, k, and the number
of items inserted?
Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

1 kn

Pr(al = 0) = (1- )m N

m

Step 2: What is the probability that querying a new item w gives a
false positive?
Pr(Alhy(w)] = ... =Alhp(w)] =1)
= Pr(A[h1(w)] = 1) x ... x Pr(Alhp(w)] = 1)

N
= (1 - e‘%) Actually Incorrect!

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 18




How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

Pr(al = 0) = (1- “)m N

m

Step 2: What is the probability that querying a new item w gives a
false positive?
Pr(Alhy(w)] = ... =Alhp(w)] =1)
= Pr(A[h1(w)] = 1) x ... x Pr(Alhp(w)] = 1)

N
= (1 - e‘%) Actually Incorrect! Dependent events.

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 18




