
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 6

1

Logistics

• Problem Set 1 is due tomorrow at 11:59pm in Gradescope.
• Quiz 3 is due Monday at 8pm.

2

Last Time

Last Class:

• Higher moment bounds and exponential concentration bounds

• Bernstein inequality

This Class:

• Connection between exponential concentration bounds and the
central limit theorem.

• The Chernoff bound.

• Bloom filters: random hashing to maintain a large set in small
space.

3

-

Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables X1, . . . , Xn falling in [-1,1]. Let µ = E[

∑
Xi],

σ2 = Var[
∑

Xi], and s ≤ σ. Then:

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣≥ sσ
)

≤ 2 exp
(
−s2

4

)
.

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

N (0,σ2) has density p(sσ) = 1√
2πσ2 · e−

s2
2 .

4

- .

(→ ⇐
-

st

0 → n o

Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables X1, . . . , Xn falling in [-1,1]. Let µ = E[

∑
Xi],

σ2 = Var[
∑

Xi], and s ≤ σ. Then:

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣≥ sσ
)

≤ 2 exp
(
−s2

4

)
.

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

N (0,σ2) has density p(sσ) = 1√
2πσ2 · e−

s2
2 .

4

Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables X1, . . . , Xn falling in [-1,1]. Let µ = E[

∑
Xi],

σ2 = Var[
∑

Xi], and s ≤ σ. Then:

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣≥ sσ
)

≤ 2 exp
(
−s2

4

)
.

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

N (0,σ2) has density p(sσ) = 1√
2πσ2 · e−

s2
2 .

4

K
I E EE

-

a -

Gaussian Tails

N (0,σ2) has density p(sσ) = 1√
2πσ2 · e−

s2
2 .

Exercise: Using this can show that for X ∼ N (0,σ2): for any s ≥ 0,

Pr (|X| ≥ s · σ) ≤ 2e− s2
2 .

Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein’s inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.

5

-

Gaussian Tails

N (0,σ2) has density p(sσ) = 1√
2πσ2 · e−

s2
2 .

Exercise: Using this can show that for X ∼ N (0,σ2): for any s ≥ 0,

Pr (|X| ≥ s · σ) ≤ 2e− s2
2 .

Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein’s inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.

5

- -

' I t t

Gaussian Tails

N (0,σ2) has density p(sσ) = 1√
2πσ2 · e−

s2
2 .

Exercise: Using this can show that for X ∼ N (0,σ2): for any s ≥ 0,

Pr (|X| ≥ s · σ) ≤ 2e− s2
2 .

Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein’s inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.

5

- s i t
2 e

Gaussian Tails

N (0,σ2) has density p(sσ) = 1√
2πσ2 · e−

s2
2 .

Exercise: Using this can show that for X ∼ N (0,σ2): for any s ≥ 0,

Pr (|X| ≥ s · σ) ≤ 2e− s2
2 .

Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein’s inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.

5

Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.

• Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

• Many random variables can be approximated as the sum of a
large number of small and roughly independent random effects.
Thus, their distribution looks Gaussian by CLT.

6

Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.

• Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

• Many random variables can be approximated as the sum of a
large number of small and roughly independent random effects.
Thus, their distribution looks Gaussian by CLT.

6

Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.

• Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

• Many random variables can be approximated as the sum of a
large number of small and roughly independent random effects.
Thus, their distribution looks Gaussian by CLT.

6

The Chernoff Bound

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1}. Let µ =

E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣≥ δµ

)
≤ 2 exp

(
− δ2µ

2+ δ

)
.

As δ gets larger and larger, the bound falls of exponentially fast.

7

ft E . - I -

The Chernoff Bound

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1}. Let µ =

E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣≥ δµ

)
≤ 2 exp

(
− δ2µ

2+ δ

)
.

As δ gets larger and larger, the bound falls of exponentially fast.

7

Return to Random Hashing

We hash m values x1, . . . , xm using a random hash function into
a table with n = m entries.

• I.e., for all j ∈ [m] and i ∈ [m], Pr(h(xj) = i) = 1
m and hash

values are chosen independently.

What will be the maximum number of items hashed into the
same location?

8

=

Return to Random Hashing

We hash m values x1, . . . , xm using a random hash function into
a table with n = m entries.

• I.e., for all j ∈ [m] and i ∈ [m], Pr(h(xj) = i) = 1
m and hash

values are chosen independently.

What will be the maximum number of items hashed into the
same location?

8

fully i ndepth

Return to Random Hashing

We hash m values x1, . . . , xm using a random hash function into
a table with n = m entries.

• I.e., for all j ∈ [m] and i ∈ [m], Pr(h(xj) = i) = 1
m and hash

values are chosen independently.

What will be the maximum number of items hashed into the
same location?

8

Maximum Load in Randomized Hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj
is hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si] =
m∑

j=1

E[Si,j] = m · 1
m

= 1

= µ.

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣≥ δ · µ
)

≤ 2 exp
(
− δ2

2+ δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm : the items.
h: random hash function mapping x1, . . . , xm → [m].

9

- - -

Maximum Load in Randomized Hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj
is hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si] =
m∑

j=1

E[Si,j] = m · 1
m

= 1

= µ.

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣≥ δ · µ
)

≤ 2 exp
(
− δ2

2+ δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm : the items.
h: random hash function mapping x1, . . . , xm → [m].

9

→Eg - - - -

Maximum Load in Randomized Hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj
is hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si] =
m∑

j=1

E[Si,j] = m · 1
m

= 1 = µ.

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣≥ δ · µ
)

≤ 2 exp
(
− δ2

2+ δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm : the items.
h: random hash function mapping x1, . . . , xm → [m].

9

-

Maximum Load in Randomized Hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj
is hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si] =
m∑

j=1

E[Si,j] = m · 1
m

= 1 = µ.

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣≥ δ · µ
)

≤ 2 exp
(
− δ2

2+ δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm : the items.
h: random hash function mapping x1, . . . , xm → [m].

9

f) - -

sisesi;

m -
d -

- - -

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm+ 1) ≤ 2 exp
(
− (20 logm)2

2+ 20 logm

)

≤ exp(−18 logm) ≤ 2
m18

.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 20 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 20 logm+ 1) ≤ m · 2
m18 =

2
m17

.

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

10

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm+ 1) ≤ 2 exp
(
− (20 logm)2

2+ 20 logm

)

≤ exp(−18 logm) ≤ 2
m18

.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 20 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 20 logm+ 1) ≤ m · 2
m18 =

2
m17

.

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

10

3201gn t , = 201pm

-

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm+ 1) ≤ 2 exp
(
− (20 logm)2

2+ 20 logm

)

≤ exp(−18 logm) ≤ 2
m18

.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 20 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 20 logm+ 1) ≤ m · 2
m18 =

2
m17

.

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

10

- - - =

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm+ 1) ≤ 2 exp
(
− (20 logm)2

2+ 20 logm

)
≤ exp(−18 logm) ≤ 2

m18 .

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 20 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 20 logm+ 1) ≤ m · 2
m18 =

2
m17

.

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

10

-
I

- ¥
[--t.IT#2expf?E.:
%9ff)=zexptEm)

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm+ 1) ≤ 2 exp
(
− (20 logm)2

2+ 20 logm

)
≤ exp(−18 logm) ≤ 2

m18 .

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 20 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 20 logm+ 1) ≤ m · 2
m18 =

2
m17

.

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

10

÷

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm+ 1) ≤ 2 exp
(
− (20 logm)2

2+ 20 logm

)
≤ exp(−18 logm) ≤ 2

m18 .

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 20 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 20 logm+ 1) ≤ m · 2
m18 =

2
m17 .

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

10

-

- - -

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(logm) with very
high probability.

• So, even with a simple linked list to store the items in
each bucket, worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the
maximum load is bounded by O(

√
m) with good

probability (good exercise).
• The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(logm).

11

- .

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(logm) with very
high probability.

• So, even with a simple linked list to store the items in
each bucket, worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the
maximum load is bounded by O(

√
m) with good

probability (good exercise).
• The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(logm).

11

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(logm) with very
high probability.

• So, even with a simple linked list to store the items in
each bucket, worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the
maximum load is bounded by O(

√
m) with good

probability (good exercise).

• The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(logm).

11

better

-

-Ellyi n t .

- wo r s e[[(pain.se
I F turfed.

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(logm) with very
high probability.

• So, even with a simple linked list to store the items in
each bucket, worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the
maximum load is bounded by O(

√
m) with good

probability (good exercise).
• The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(logm).

11

±

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

• Allow small probability δ > 0 of false positives. I.e., for any
x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

12

-

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time.

What data structure
solves this problem?

• Allow small probability δ > 0 of false positives. I.e., for any
x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

12

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

• Allow small probability δ > 0 of false positives. I.e., for any
x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

12

(hash tables

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

• Allow small probability δ > 0 of false positives. I.e., for any
x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

12

(
g -

gasypasiti
e

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

• Allow small probability δ > 0 of false positives. I.e., for any
x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

12

C ,

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

-

[- -
= .

-

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

:

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

-

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

3

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

- - -

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

-

- = -

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

← I s

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

O 0 0

-

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

O &.¥0.5

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

13

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.
13

② @BOFEI e - I I
- - -

Applications: Caching

Akamai (Boston-based company serving 15− 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ – pages
only visited once fill over 75% of cache.

• When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of δ = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.

14

-

Applications: Caching

Akamai (Boston-based company serving 15− 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ – pages
only visited once fill over 75% of cache.

• When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of δ = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.

14

= - -

Applications: Caching

Akamai (Boston-based company serving 15− 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ – pages
only visited once fill over 75% of cache.

• When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of δ = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.

14

-

,

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

• When a new rating is inserted for (userx,moviey), add
(userx,moviey) to a bloom filter.

• Before reading (userx,moviey) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

• False positive: A read is made to a possibly empty cell. A δ = .05
false positive rate gives a 95% reduction in these empty reads.

15

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

• When a new rating is inserted for (userx,moviey), add
(userx,moviey) to a bloom filter.

• Before reading (userx,moviey) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

• False positive: A read is made to a possibly empty cell. A δ = .05
false positive rate gives a 95% reduction in these empty reads.

15

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

• When a new rating is inserted for (userx,moviey), add
(userx,moviey) to a bloom filter.

• Before reading (userx,moviey) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

• False positive: A read is made to a possibly empty cell. A δ = .05
false positive rate gives a 95% reduction in these empty reads.

15

-

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

• When a new rating is inserted for (userx,moviey), add
(userx,moviey) to a bloom filter.

• Before reading (userx,moviey) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

• False positive: A read is made to a possibly empty cell. A δ = .05
false positive rate gives a 95% reduction in these empty reads. 15-

More Applications

• Database Joins: Quickly eliminate most keys in one column that
don’t correspond to keys in another.

• Recommendation systems: Bloom filters are used to prevent
showing users the same recommendations twice.

• Spam/Fraud Detection:
• Bit.ly and Google Chrome use bloom filters to quickly check
if a url maps to a flagged site and prevent a user from
following it.

• Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

• Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions
involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).

16

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k).

How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) ̸= i ∩ . . . ∩ hk(xk) ̸= i

∩ h1(x2) ̸= i . . . ∩ hk(x2) ̸= i ∩ . . .
)

= Pr
(
h1(x1) ̸= i)× . . .× Pr

(
hk(x1) ̸= i)× Pr

(
h1(x2) ̸= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

17

=

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) ̸= i ∩ . . . ∩ hk(xk) ̸= i

∩ h1(x2) ̸= i . . . ∩ hk(x2) ̸= i ∩ . . .
)

= Pr
(
h1(x1) ̸= i)× . . .× Pr

(
hk(x1) ̸= i)× Pr

(
h1(x2) ̸= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

17

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) ̸= i ∩ . . . ∩ hk(xk) ̸= i

∩ h1(x2) ̸= i . . . ∩ hk(x2) ̸= i ∩ . . .
)

= Pr
(
h1(x1) ̸= i)× . . .× Pr

(
hk(x1) ̸= i)× Pr

(
h1(x2) ̸= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

17

X , . . - X nT i d i e d ' T can)"

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) ̸= i ∩ . . . ∩ hk(xk) ̸= i

∩ h1(x2) ̸= i . . . ∩ hk(x2) ̸= i ∩ . . .
)

= Pr
(
h1(x1) ̸= i)× . . .× Pr

(
hk(x1) ̸= i)× Pr

(
h1(x2) ̸= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

17

- s - d
- -

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) ̸= i ∩ . . . ∩ hk(xk) ̸= i

∩ h1(x2) ̸= i . . . ∩ hk(x2) ̸= i ∩ . . .
)

= Pr
(
h1(x1) ̸= i)× . . .× Pr

(
hk(x1) ̸= i)× Pr

(
h1(x2) ̸= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

17

- -

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) ̸= i ∩ . . . ∩ hk(xk) ̸= i

∩ h1(x2) ̸= i . . . ∩ hk(x2) ̸= i ∩ . . .
)

= Pr
(
h1(x1) ̸= i)× . . .× Pr

(
hk(x1) ̸= i)× Pr

(
h1(x2) ̸= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

17

=

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 18

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 18

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 18

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 18

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k

Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 18

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect!

Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 18

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 18

