COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 4

Logistics

- Problem Set 1 due next Friday 9/23, at 11:59pm.
- Second quiz will be released today after class, due Monday 8:00pm.
- I will hold additional office hours next Tuesday 11am-12pm.

Last Time

Last Class:

- Expected collision analysis for hashing and collision free hashing via Markov's inequality. Gives $O(1)$ query time and $O\left(m^{2}\right)$ space for item look-up problem.
- 2-level hashing and its analysis via linearity of expectation. Gives optimal $O(1)$ query time and $O(m)$ space.

This Time:

- 2-universal and pairwise independent hash functions
- Hashing for load balancing. Motivating:
- Stronger concentration inequalities: Chebyshev's inequality, exponential tail bounds, and their connections to the law of large numbers and central limit theorem.
- The union bound to bound the probability that one of multiple possible correlated events happens.

Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function $h(x)$ with $\operatorname{Pr}[\mathrm{h}(x)=i]=\frac{1}{n}$ for $i \in 1, \ldots, n$ and $\mathrm{h}(x), \mathrm{h}(y)$ independent for $x \neq y$.

- To compute a random hash function we have to store a table of x values and their hash values. Would take at least $O(m)$ space and $O(m)$ query time to look up $h(x)$ if we hash m values. Making our whole quest for $O(1)$ query time pointless!

\mathbf{x}	$\mathbf{h (x)}$
x_{1}	45
x_{2}	1004
x_{3}	10
\vdots	\vdots
x_{m}	12

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash function from $\mathrm{h}: U \rightarrow[n]$ is two universal if:

$$
\operatorname{Pr}[h(x)=h(y)] \leq \frac{1}{n}
$$

Exercise: Rework the two level hashing proof to show that this property is really all that is needed.

When $\mathrm{h}(x)$ and $\mathrm{h}(y)$ are chosen independently at random from [n$]$, $\operatorname{Pr}[\mathrm{h}(x)=\mathrm{h}(y)]=\frac{1}{n}$ (so a fully random hash function is 2-universal) Efficient Alternative: Let p be a prime with $p \geq|U|$. Choose random $\mathrm{a}, \mathrm{b} \in[p]$ with $\mathrm{a} \neq 0$. Represent x an an integer and let

$$
\mathrm{h}(x)=(\mathrm{ax}+\mathrm{b} \quad \bmod p) \quad \bmod n .
$$

Pairwise Independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from $\mathrm{h}: \mathrm{U} \rightarrow[n]$ is pairwise independent if for all $i, j \in[n]$:

$$
\operatorname{Pr}[\mathrm{h}(x)=i \cap \mathrm{~h}(y)=j]=\frac{1}{n^{2}} .
$$

Pairwise hash functions are 2-universal:

$$
\operatorname{Pr}[\mathrm{h}(x)=\mathrm{h}(y)]=\sum_{i=1}^{n} \operatorname{Pr}[\mathrm{~h}(x)=i \cap \mathrm{~h}(y)=i]=n \cdot \frac{1}{n^{2}}=\frac{1}{n} .
$$

A closely related $(\mathrm{ax}+\mathrm{b}) \bmod p$ construction gives pairwise independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and pairwise independent. But it is not efficiently implementable.

Another Application

Randomized Load Balancing:

Simple Model: n requests randomly assigned to k servers. How many requests must each server handle?

- Often assignment is done via a random hash function. Why?

Weakness of Markov's

$$
\mathbb{E}\left[\mathrm{R}_{i}\right]=\sum_{j=1}^{n} \mathbb{E}\left[\mathbb{I}_{\text {request } j \text { assigned to } i}\right]=\sum_{j=1}^{n} \operatorname{Pr}[j \text { assigned to } i]=\frac{n}{k} .
$$

If we provision each server be able to handle twice the expected load, what is the probability that a server is overloaded?

Applying Markov's Inequality

$$
\operatorname{Pr}\left[R_{i} \geq 2 \mathbb{E}\left[R_{i}\right]\right] \leq \frac{\mathbb{E}\left[R_{i}\right]}{2 \mathbb{E}\left[R_{i}\right]}=\frac{1}{2} .
$$

Not great....half the servers may be overloaded.
n : total number of requests, k : number of servers randomly assigned requests,
R_{j} : number of requests assigned to server i.

Chebyshev's inequality

With a very simple twist, Markov's inequality can be made much more powerful.

For any random variable X and any value $t>0$:

$$
\operatorname{Pr}(|X| \geq t)=\operatorname{Pr}\left(X^{2} \geq t^{2}\right) .
$$

X^{2} is a nonnegative random variable. So can apply Markov's inequality:

Chebyshev's inequality:

$$
\operatorname{Pr}\left(\left\lvert\, X-\mathbb{E}[X \operatorname{P} \operatorname{rr}(\mid X t) \geq t)=\operatorname{Pr}\left(X^{2} \geq t^{2}\right) \leq \frac{\mathbb{E}\left[X^{2}\right]}{t^{2}} \frac{\operatorname{Var}[X]}{t^{2}} .\right.\right.
$$

(by plugging in the random variable $\mathrm{X}-\mathbb{E}[\mathrm{X}]$)

Chebyshev's inequality

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

What is the probability that \mathbf{X} falls s standard deviations from it's mean?

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq s \cdot \sqrt{\operatorname{Var}[X]}) \leq \frac{\operatorname{Var}[X]}{s^{2} \cdot \operatorname{Var}[X]}=\frac{1}{s^{2}} .
$$

X : any random variable, t, s : any fixed numbers.

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ with mean μ and variance σ^{2}.

How well does the sample average $\mathrm{S}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i}$ approximate the true mean μ ?

$$
\operatorname{Var}[\mathrm{S}]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[\mathrm{X}_{i}\right]=\frac{1}{n^{2}} \cdot n \cdot \sigma^{2}=\frac{\sigma^{2}}{n} .
$$

By Chebyshev's Inequality: for any fixed value $\epsilon>0$,

$$
\operatorname{Pr}(|S-\mathbb{E}[S] \mu| \geq \epsilon) \leq \frac{\operatorname{Var}[\mathrm{S}]}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}} .
$$

Law of Large Numbers: with enough samples n, the sample average will always concentrate to the mean.

- Cannot show from vanilla Markov's inequality.

Load Balancing Variance

We can write the number of requests assigned to server i, R_{i} as:

$$
\mathrm{R}_{i}=\sum_{j=1}^{n} \mathrm{R}_{i, j} \operatorname{Var}\left[\mathrm{R}_{i}\right]=\sum_{j=1}^{n} \operatorname{Var}\left[\mathrm{R}_{i, j}\right] \quad \text { (linearity of variance) }
$$

where $\mathrm{R}_{i, j}$ is 1 if request j is assigned to server i and 0 otherwise.

$$
\begin{aligned}
\operatorname{Var}\left[\mathrm{R}_{i, j}\right] & =\mathbb{E}\left[\left(\mathrm{R}_{i, j}-\mathbb{E}\left[\mathrm{R}_{i, j}\right]\right)^{2}\right] \\
& =\operatorname{Pr}\left(\mathrm{R}_{i, j}=1\right) \cdot\left(1-\mathbb{E}\left[\mathrm{R}_{i, j}\right]\right)^{2}+\operatorname{Pr}\left(\mathrm{R}_{i, j}=0\right) \cdot\left(0-\mathbb{E}\left[\mathrm{R}_{i, j}\right]\right)^{2} \\
& =\frac{1}{k} \cdot\left(1-\frac{1}{k}\right)^{2}+\left(1-\frac{1}{k}\right) \cdot\left(0-\frac{1}{k}\right)^{2} \\
& =\frac{1}{k}-\frac{1}{k^{2}} \leq \frac{1}{k} \Longrightarrow \operatorname{Var}\left[\mathrm{R}_{i}\right] \leq \frac{n}{k} .
\end{aligned}
$$

n : total number of requests, k : number of servers randomly assigned requests, R_{i} : number of requests assigned to server i.

Bounding the Load via Chebyshevs

Letting R_{i} be the number of requests sent to server $i, \mathbb{E}\left[R_{i}\right]=\frac{n}{R}$ and $\operatorname{Var}\left[\mathrm{R}_{i}\right] \leq \frac{n}{R}$.
Applying Chebyshev's:

$$
\operatorname{Pr}\left(\mathrm{R}_{i} \geq \frac{2 n}{k}\right) \leq \operatorname{Pr}\left(\left|\mathrm{R}_{i}-\mathbb{E}\left[\mathrm{R}_{i}\right]\right| \geq \frac{n}{k}\right) \leq \frac{n / k}{n^{2} / k^{2}}=\frac{k}{n}
$$

- Overload probability is extremely small when $k<n$!
- Might seem counterintuitive - bound gets worse as k grows.
- When k is large, the number of requests each server sees in expectation is very small so the law of large numbers doesn't 'kick in'.
n : total number of requests, k : number of servers randomly assigned requests, R_{i} : number of requests assigned to server i.

Maximum Server Load

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[\mathrm{R}_{i}\right]=\frac{2 n}{R}$. I.e., that some server is overloaded if we give each $\frac{2 n}{R}$ capacity?
$\operatorname{Pr}\left(\max _{i}\left(\mathrm{R}_{i}\right) \geq \frac{2 n}{k}\right)=\operatorname{Pr}\left(\left[\mathrm{R}_{1} \geq \frac{2 n}{k}\right] \cup\left[\mathrm{R}_{2} \geq \frac{2 n}{k}\right] \cup \ldots \cup\left[\mathrm{R}_{k} \geq \frac{2 n}{k}\right]\right)=\operatorname{Pr}$
We want to show that $\operatorname{Pr}\left(\bigcup_{i=1}^{k}\left[R_{i} \geq \frac{2 n}{k}\right]\right)$ is small.
How do we do this? Note that $\mathrm{R}_{1}, \ldots, \mathrm{R}_{k}$ are correlated in a somewhat complex way.
n : total number of requests, k : number of servers randomly assigned requests, R_{i} : number of requests assigned to server $i . \mathbb{E}\left[\mathrm{R}_{i}\right]=\frac{n}{k} . \operatorname{Var}\left[\mathrm{R}_{i}\right]=\frac{n}{k}$.

The Union Bound

Union Bound: For any random events $A_{1}, A_{2}, \ldots, A_{k}$,

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \leq \operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\ldots+\operatorname{Pr}\left(A_{k}\right) .
$$

When is the union bound tight? When A_{1}, \ldots, A_{k} are all disjoint.

Applying the Union Bound

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[R_{i}\right]=\frac{2 n}{R}$. I.e., that some server is overloaded if we give each $\frac{2 n}{R}$ capacity?

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{i}\left(R_{i}\right) \geq \frac{2 n}{k}\right) & =\operatorname{Pr}\left(\bigcup_{i=1}^{k}\left[R_{i} \geq \frac{2 n}{k}\right]\right) \\
& \leq \sum_{i=1}^{k} \operatorname{Pr}\left(\left[R_{i} \geq \frac{2 n}{k}\right]\right) \quad \text { (Union Bound) } \\
& \leq \sum_{i=1}^{k} \frac{k}{n}=\frac{k^{2}}{n} \quad \text { (Bound from Chebyshev's) }
\end{aligned}
$$

As long as $k \leq O(\sqrt{n})$, with good probability, the maximum server load will be small (compared to the expected load).
n : total number of requests, k : number of servers randomly assigned requests,
R_{i} : number of requests assigned to server $i . \mathbb{E}\left[R_{i}\right]=\frac{n}{k} . \operatorname{Var}\left[R_{i}\right]=\frac{n}{k}$.

