COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2022. Lecture 4

Logistics

- Problem Set 1 due next Friday 9/23, at 11:59pm.
- Second quiz will be released today after class, due Monday 8:00pm.
- I will hold additional office hours next Tuesday 11am-12pm.

Last Time

Last Class:

- Expected collision analysis for hashing and collision free hashing via Markov's inequality. Gives O(1) query time and O(m²) space for item look-up problem.
- 2-level hashing and its analysis via linearity of expectation. Gives optimal O(1) query time and O(m) space.

This Time:

- · 2-universal and pairwise independent hash functions
- Hashing for load balancing. Motivating:
 - Stronger concentration inequalities: Chebyshev's inequality, exponential tail bounds, and their connections to the law of large numbers and central limit theorem.
 - The union bound to bound the probability that one of multiple possible correlated events happens.

Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with $Pr[h(x) = i] = \frac{1}{n}$ for $i \in 1, ..., n$ and h(x), h(y) independent for $x \neq y$.

To compute a random hash function we have to store a table of x values and their hash values. Would take at least O(m) space and O(m) query time to look up h(x) if we hash m values.
 Making our whole quest for O(1) query time pointless!

x	h(x)
X ₁	45
\mathbf{x}_2	1004
x_3	10
÷	::
X _m	12

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash function from $h: U \to [n]$ is two universal if:

$$\Pr[\mathsf{h}(x) = \mathsf{h}(y)] \le \frac{1}{n}.$$

Exercise: Rework the two level hashing proof to show that this property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n], $Pr[h(x) = h(y)] = \frac{1}{n}$ (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with $p \ge |U|$. Choose random $a, b \in [p]$ with $a \ne 0$. Represent x an an integer and let

$$h(x) = (ax + b \mod p) \mod n$$
.

Pairwise Independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}: U \to [n]$ is pairwise independent if for all $i, j \in [n]$:

$$\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}.$$

Pairwise hash functions are 2-universal:

$$\Pr[h(x) = h(y)] = \sum_{i=1}^{n} \Pr[h(x) = i \cap h(y) = i] = n \cdot \frac{1}{n^2} = \frac{1}{n}.$$

A closely related $(ax + b) \mod p$ construction gives pairwise independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and pairwise independent. But it is not efficiently implementable.

Another Application

Randomized Load Balancing:

Simple Model: *n* requests randomly assigned to *k* servers. How many requests must each server handle?

· Often assignment is done via a random hash function. Why?

Weakness of Markov's

$$\mathbb{E}[\mathsf{R}_i] = \sum_{j=1}^n \mathbb{E}[\mathbb{I}_{\text{request } j \text{ assigned to } i}] = \sum_{j=1}^n \mathsf{Pr}[j \text{ assigned to } i] = \frac{n}{k}.$$

If we provision each server be able to handle twice the expected load, what is the probability that a server is overloaded?

Applying Markov's Inequality

$$\Pr\left[\mathsf{R}_i \geq 2\mathbb{E}[\mathsf{R}_i]\right] \leq \frac{\mathbb{E}[\mathsf{R}_i]}{2\mathbb{E}[\mathsf{R}_i]} = \frac{1}{2}.$$

Not great...half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests, \mathbf{R}_i : number of requests assigned to server i.

Chebyshev's inequality

With a very simple twist, Markov's inequality can be made much more powerful.

For any random variable X and any value t > 0:

$$\Pr(|X| \ge t) = \Pr(X^2 \ge t^2).$$

X² is a nonnegative random variable. So can apply Markov's inequality:

Chebyshev's inequality:

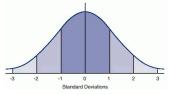
$$\Pr(|X - \mathbb{E}[XP|r(Xt) \ge t)) = \Pr(X^2 \ge t^2) \le \frac{\mathbb{E}[X^2]}{t^2} \frac{\mathsf{Var}[X]}{t^2}.$$

(by plugging in the random variable $X - \mathbb{E}[X]$)

Chebyshev's inequality

$$\Pr(|\mathbf{X} - \mathbb{E}[\mathbf{X}]| \ge t) \le \frac{\mathsf{Var}[\mathbf{X}]}{t^2}$$

What is the probability that **X** falls *s* standard deviations from it's mean?



$$\Pr(|X - \mathbb{E}[X]| \geq s \cdot \sqrt{\mathsf{Var}[X]}) \leq \frac{\mathsf{Var}[X]}{s^2 \cdot \mathsf{Var}[X]} = \frac{1}{s^2}.$$

X: any random variable, t, s: any fixed numbers.

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random variables X_1, \ldots, X_n with mean μ and variance σ^2 .

How well does the sample average $S = \frac{1}{n} \sum_{i=1}^{n} X_i$ approximate the true mean μ ?

$$Var[S] = Var\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n^{2}}\sum_{i=1}^{n}Var\left[X_{i}\right] = \frac{1}{n^{2}}\cdot n\cdot \sigma^{2} = \frac{\sigma^{2}}{n}.$$

By Chebyshev's Inequality: for any fixed value $\epsilon > 0$,

$$\Pr(|\mathsf{S} - \mathbb{E}[\mathsf{S}]\boldsymbol{\mu}| \ge \epsilon) \le \frac{\mathsf{Var}[\mathsf{S}]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}.$$

Law of Large Numbers: with enough samples n, the sample average will always concentrate to the mean.

Cannot show from vanilla Markov's inequality.

Load Balancing Variance

We can write the number of requests assigned to server i, R_i as:

$$R_i = \sum_{j=1}^n R_{i,j} \operatorname{Var}[R_i] = \sum_{j=1}^n \operatorname{Var}[R_{i,j}]$$
 (linearity of variance)

where $R_{i,j}$ is 1 if request j is assigned to server i and 0 otherwise.

$$\begin{aligned} \mathsf{Var}[\mathsf{R}_{i,j}] &= \mathbb{E}\left[\left(\mathsf{R}_{i,j} - \mathbb{E}[\mathsf{R}_{i,j}]\right)^2\right] \\ &= \mathsf{Pr}(\mathsf{R}_{i,j} = 1) \cdot \left(1 - \mathbb{E}[\mathsf{R}_{i,j}]\right)^2 + \mathsf{Pr}(\mathsf{R}_{i,j} = 0) \cdot \left(0 - \mathbb{E}[\mathsf{R}_{i,j}]\right)^2 \\ &= \frac{1}{k} \cdot \left(1 - \frac{1}{k}\right)^2 + \left(1 - \frac{1}{k}\right) \cdot \left(0 - \frac{1}{k}\right)^2 \\ &= \frac{1}{k} - \frac{1}{k^2} \le \frac{1}{k} \implies \mathsf{Var}[\mathsf{R}_i] \le \frac{n}{k}. \end{aligned}$$

n: total number of requests, k: number of servers randomly assigned requests, \mathbf{R}_i : number of requests assigned to server i.

Bounding the Load via Chebyshevs

Letting R_i be the number of requests sent to server i, $\mathbb{E}[R_i] = \frac{n}{k}$ and $Var[R_i] \leq \frac{n}{k}$.

Applying Chebyshev's:

$$\Pr\left(\mathbf{R}_i \ge \frac{2n}{k}\right) \le \Pr\left(|\mathbf{R}_i - \mathbb{E}[\mathbf{R}_i]| \ge \frac{n}{k}\right) \le \frac{n/k}{n^2/k^2} = \frac{k}{n}.$$

- Overload probability is extremely small when $k \ll n!$
- Might seem counterintuitive bound gets worse as k grows.
- When k is large, the number of requests each server sees in expectation is very small so the law of large numbers doesn't 'kick in'.

n: total number of requests, k: number of servers randomly assigned requests, \mathbf{R}_i : number of requests assigned to server i.

Maximum Server Load

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}[\mathbf{R}_i] = \frac{2n}{k}$. I.e., that some server is overloaded if we give each $\frac{2n}{k}$ capacity?

$$\Pr\left(\max_{i}(\mathsf{R}_{i}) \geq \frac{2n}{k}\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \left[\mathsf{R}_{2} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right) = \Pr\left(\left[\mathsf{R}_{1} \geq \frac{2n}{k}\right] \cup \ldots \cup \left[\mathsf{R}_{k} \geq \frac{2n}{k}\right]\right)$$

We want to show that $\Pr\left(\bigcup_{i=1}^{k}\left[\mathbf{R}_{i}\geq\frac{2n}{k}\right]\right)$ is small.

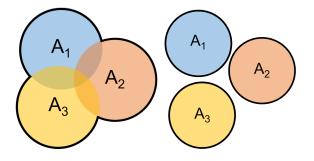
How do we do this? Note that $\mathbf{R}_1, \dots, \mathbf{R}_k$ are correlated in a somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests, R_i : number of requests assigned to server i. $\mathbb{E}[R_i] = \frac{n}{k}$. $Var[R_i] = \frac{n}{k}$.

The Union Bound

Union Bound: For any random events $A_1, A_2, ..., A_k$,

$$\Pr(A_1 \cup A_2 \cup \ldots \cup A_k) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_k).$$



When is the union bound tight? When $A_1, ..., A_k$ are all disjoint.

Applying the Union Bound

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}[\mathbf{R}_i] = \frac{2n}{k}$. I.e., that some server is overloaded if we give each $\frac{2n}{k}$ capacity?

$$\Pr\left(\max_{i}(\mathsf{R}_{i}) \geq \frac{2n}{k}\right) = \Pr\left(\bigcup_{i=1}^{k} \left[\mathsf{R}_{i} \geq \frac{2n}{k}\right]\right)$$

$$\leq \sum_{i=1}^{k} \Pr\left(\left[\mathsf{R}_{i} \geq \frac{2n}{k}\right]\right) \qquad \text{(Union Bound)}$$

$$\leq \sum_{i=1}^{k} \frac{k}{n} = \frac{k^{2}}{n} \qquad \text{(Bound from Chebyshev's)}$$

As long as $k \le O(\sqrt{n})$, with good probability, the maximum server load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,

 R_i : number of requests assigned to server i. $\mathbb{E}[R_i] = \frac{n}{k}$. $Var[R_i] = \frac{n}{k}$.