
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 3

1

Logistics

• Problem Set 1 has been posted on the course website and is
due Friday 9/23 at 11:59pm.

• I have to end my office hours at 3pm today. I will add office
hours from 11am-12pm next Tuesday 9/20 to compensate.

• We generally don’t give extensions on quizzes, since we discuss
solutions in class on Tuesday. To make up for this, we drop the
lowest quiz grade at the end of the semester.

• On the quiz feedback question, several people asked for more
practice questions/examples. Check out the MIT and Khan
academy material posted on the Schedule. We will also keep
having probability practice questions on the first few quizzes.

• It is common to not catch everything in lecture. I strongly
encourage going back to the slides to review/check your
understanding after class. Also come to office hours for more
in-depth discussion/examples. 2

Content Overview

Last Class:
• Linearity of variance.

• Markov’s inequality: the most fundamental concentration
bound. Pr(X ≥ t · E[X]) ≤ 1/t.

• Algorithmic applications of Markov’s inequality, linearity of
expectation, and indicator random variables:

• Counting collisions to estimate CAPTCHA database size.
• Start on analyzing hash tables with random hash functions.

Today:
• Finish up random hash functions and hash tables.

• 2-level hashing, 2-universal and pairwise independent hash
functions.

3

Quiz Questions

4

Quiz Questions

5

Quiz Questions

6

Hash Tables

We store m items from a large universe in a hash table with n
positions.

• Want to show that when h : U → [n] is a fully random hash
function, query time is O(1) with good probability.

• Equivalently: want to show that there are few collisions
between hashed items.

7

Linearity of Expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0
otherwise. The number of pairwise duplicates is:

C =
∑

i,j∈[m],i<j
Ci,j.E[C] =

∑
i,j∈[m],i<j

E[Ci,j].

(linearity of expectation)
For any pair i, j, i < j:
E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1

n .

E[C] =
∑

i,j∈[m],i<j

1
n =

(m
2
)

n =
m(m− 1)

2n .

Identical to the CAPTCHA analysis!

xi, xj : pair of stored items, m: total number of stored items, n: hash table size,
C: total pairwise collisions in table, h: random hash function.

8

Collision Free Hashing

E[C] = m(m− 1)
2n .

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

• Think-Pair-Share: Give an upper bound on the probability that
we have at least one collision, i.e., Pr[C ≥ 1].

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1
8 =

7
8

Pretty good...but we are using O(m2) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

9

Two Level Hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash
function mapping [si] → [s2i].

• Just Showed: A random function is collision free with
probability ≥ 7

8 so can just generate a random hash function
and check if it is collision free.

10

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: S = n+

∑n
i=1 s2iE[S] = n+

∑n
i=1 E[s2i]

E[s2i] = E

 m∑

j=1

Ih(xj)=i

2

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i

 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

Collisions again!
• For j = k,
E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2
]
= Pr[h(xj) = i] = 1

n .

• For j ̸= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2 .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. 11

Space Usage

E[s2i] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1n + 2 ·

(
m
2

)
· 1
n2

=
m
n +

m(m− 1)
n2 ≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n .

• For j ̸= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2 .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑
i=1

E[s2i] ≤ n+ n · 2 = 3n = 3m.

Near optimal space with O(1) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. 12

Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with
Pr[h(x) = i] = 1

n for i ∈ 1, . . . ,n and h(x),h(y) independent for x ̸= y.

• To compute a random hash function we have to store a table of
x values and their hash values. Would take at least O(m) space
and O(m) query time to look up h(x) if we hash m values.
Making our whole quest for O(1) query time pointless!

13

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ 1
n .

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = h(y)] = 1

n (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p ≥ |U|. Choose random
a,b ∈ [p] with a ̸= 0. Represent x an an integer and let

h(x) = (ax+ b mod p) mod n. 14

Pairwise Independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = 1
n2 .

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ 1
n .

Pr[h(x) = h(y)] =
n∑
i=1

Pr[h(x) = i ∩ h(y) = i] = n · 1
n2 =

1
n .

A closely related (ax+ b) mod p construction gives pairwise
independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable.

15

Questions?

16

