COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 25 (Final Lecture!)

Logistics

- Problem Set 5 is due Dec 12 at 11:59pm.
- Exam is next Wednesday Dec 14, from 10:30am-12:30pm in class.
- I am holding office hours Friday 12/9 2:30-4:30pm and Monday 12/12 10am-12m. Both will be held in LGRC A215.
- It would be really helpful if you could fill out SRTIs for this class (they close Dec 23).
http://owl.umass.edu/partners/courseEvalSurvey/uma/.

Summary

Last Class:

- Analysis of gradient descent for convex and Lipschitz functions.

This Class:

- Extend gradient descent to constrained optimization via projected gradient descent.
- Course wrap up and review.

GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex GLipschitz function f, GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t} t}$, and starting point within radius $R \overline{~_{~}}$, outputs $\hat{\theta}$ satisfying:

$$
\underline{f(\underline{\hat{\theta}})} \leq f\left(\vec{\theta}_{*}\right)+\epsilon .
$$

Step 1: For all i, $f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\vec{\theta}_{*}\right\|_{2}^{2}-\left\|\vec{\theta}_{i+1}-\vec{\theta}_{*}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2}$

GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex GLipschitz function f, GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t}}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon
$$

Step 1: For all $\left.i, f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\vec{\theta}_{*}\right\|_{2}^{2}-\left\|\vec{\theta}_{i+1}-\vec{\theta}_{*}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2}\right\}$ convexity
Step 2: $\frac{1}{t} \sum_{i=1}^{t} f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{R^{2}}{2 \eta \cdot t}+\frac{\eta G^{2}}{2}$. (telescophng sun)

Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

$$
\vec{\theta}^{*}=\underset{\vec{\theta} \in \mathcal{S}}{\arg \min f(\vec{\theta})},
$$

where \mathcal{S} is a convex set.

Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

$$
\vec{\theta}^{*}=\underset{\vec{\theta} \in \mathcal{S}}{\arg \min f(\vec{\theta}),} \quad \mathbb{R} \text { is not }
$$

where \mathcal{S} is a convex set.
Definition - Convex Set: A set $\mathcal{S} \subseteq \mathbb{R}^{d}$ is convex if and only if, for any $\vec{\theta}_{1}, \vec{\theta}_{2} \in \mathcal{S}$ and $\lambda \in[0,1]$:

$$
(1-\lambda) \vec{\theta}_{1}+\lambda \cdot \vec{\theta}_{2} \in \mathcal{S}
$$

Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

$$
\vec{\theta}^{*}=\underset{\vec{\theta} \in \mathcal{S}}{\arg \min } f(\vec{\theta}),
$$

where \mathcal{S} is a convex set.
Definition - Convex Set: A set $\mathcal{S} \subseteq \mathbb{R}^{d}$ is convex if and only if, for any $\vec{\theta}_{1}, \vec{\theta}_{2} \in \mathcal{S}$ and $\lambda \in[0,1]$:

$$
(1-\lambda) \vec{\theta}_{1}+\lambda \cdot \vec{\theta}_{2} \in \mathcal{S}
$$

E.g. $\mathcal{S}=\left\{\vec{\theta} \in \mathbb{R}^{d}:\|\vec{\theta}\|_{2} \leq 1\right\} . \rightarrow \quad\left\|\theta_{1}\right\|_{2} \leq 1,\left\|\theta_{2}\right\| \leq 1$

$$
\begin{aligned}
& \left\|(1-\lambda) \theta_{1}+\lambda \theta_{2}\right\|_{2} \leq 1 \\
& \text { Cringle inegunity }
\end{aligned}
$$

Projected Gradient Descent

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S}.

- $P_{\mathcal{S}}(\vec{y})=\arg \min _{\vec{\theta} \in \mathcal{S}}\|\vec{\theta}-\vec{y}\|_{2}$.

Projected Gradient Descent
For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S}.

- $P_{\mathcal{S}}(\vec{y})=\arg \min _{\vec{\theta} \in \mathcal{S}}\|\vec{\theta}-\vec{y}\|_{2}$.
- For $\mathcal{S}=\left\{\vec{\theta} \in \mathbb{R}^{d}:\|\vec{\theta}\|_{2} \leq 1\right\}$ what is $P_{\mathcal{S}}(\vec{y})$?

Projected Gradient Descent
For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S}.

- $P_{\mathcal{S}}(\vec{y})=\arg \min _{\vec{\theta} \in \mathcal{S}}\|\vec{\theta}-\vec{y}\|_{2}$.
- For $\mathcal{S}=\left\{\vec{\theta} \in \mathbb{R}^{d}:\|\vec{\theta}\|_{2} \leq 1\right\}$ what is $P_{\mathcal{S}}(\vec{y})$?
- For \mathcal{S} being a k dimensional subspace of \mathbb{R}^{d}, what is $P_{\mathcal{S}}(\vec{y})$?
\checkmark hus otroormal ads. foaming s.

$$
P_{s}(y) \because V^{\top} y
$$

Projected Gradient Descent

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S}.

- $P_{\mathcal{S}}(\vec{y})=\arg \min _{\vec{\theta} \in \mathcal{S}}\|\vec{\theta}-\vec{y}\|_{2}$.
- For $\mathcal{S}=\left\{\vec{\theta} \in \mathbb{R}^{d}:\|\vec{\theta}\|_{2} \leq 1\right\}$ what is $P_{\mathcal{S}}(\vec{y})$?
- For \mathcal{S} being a k dimensional subspace of \mathbb{R}^{d}, what is $P_{\mathcal{S}}(\vec{y})$?

Projected Gradient Descent

- Choose some initialization $\vec{\theta}_{1}$ and set $\eta=\frac{R}{G \sqrt{t}}$.
- For $i=1, \ldots, t-1$

$$
\left\{\begin{array}{l}
\quad \vec{\theta}_{i+1}^{\text {out) }}=\vec{\theta}_{i}-\eta \cdot \vec{\nabla} f\left(\vec{\theta}_{i}\right) \\
\cdot \stackrel{\vec{\theta}_{i+1}}{ }=P_{\mathcal{S}}\left(\vec{\theta}_{i+1}^{(\text {out })}\right) .
\end{array}\right.
$$

Convex Projections

Projected gradient descent can be analyzed identically to gradient descent!

Convex Projections

Projected gradient descent can be analyzed identically to gradient descent!

Theorem - Projection to a convex set: For any convex set $\mathcal{S} \subseteq$ $\mathbb{R}^{d}, \vec{y} \in \mathbb{R}^{d}$, and $\vec{\theta} \in \mathcal{S}$,

$$
\left\|P_{\mathcal{S}}(\vec{y})-\vec{\theta}\right\|_{2} \leq\|\vec{y}-\vec{\theta}\|_{2} .
$$

Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S}, Projected GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t}}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
\theta_{1} \ldots . . \theta_{r} \epsilon S \quad \underline{f}(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon=\min _{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})+\epsilon
$$

Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S}, Projected GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t} t}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon=\min _{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})+\epsilon
$$

Recall: $\vec{\theta}_{i+1}^{\text {(out })}=\vec{\theta}_{i}-\eta \cdot \vec{\nabla} f\left(\vec{\theta}_{i}\right)$ and $\vec{\theta}_{i+1}=P_{\mathcal{S}}\left(\vec{\theta}_{i+1}^{(\text {out })}\right)$.

Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S}, Projected GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t} t}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon=\min _{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})+\epsilon
$$

Recall: $\vec{\theta}_{i+1}^{\text {(out) }}=\vec{\theta}_{i}-\eta \cdot \vec{\nabla} f\left(\vec{\theta}_{i}\right)$ and $\vec{\theta}_{i+1}=P_{\mathcal{S}}\left(\vec{\theta}_{i+1}^{\text {(out) }}\right)$.
Step 1: For all $i, f\left(\overrightarrow{\theta_{i}}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\theta_{*}\right\|_{2}^{2}-\left\|\theta_{i+1}^{\text {(tut) }}-\vec{\theta}_{*}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2}$.

Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S}, Projected GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t} t}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon=\min _{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})+\epsilon
$$

Recall: $\vec{\theta}_{i+1}^{\text {(out) }}=\vec{\theta}_{i}-\eta \cdot \vec{\nabla} f\left(\vec{\theta}_{i}\right)$ and $\vec{\theta}_{i+1}=P_{\mathcal{S}}\left(\vec{\theta}_{i+1}^{(\text {out })}\right)$.
Step 1: For all $i, f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\theta_{*}\right\|_{2}^{2}-\left\|\theta_{i+1}^{\text {(out) }}-\vec{\theta}_{*}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2}$.
Step 1.a: For all i,f($\left.f \vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\vec{\theta}_{*}\right\|_{2}^{2}-\left\|\vec{\theta}_{A_{+1}}-\vec{\theta}_{*}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2}$.

$$
\left\|\theta_{i+1} \cdot \theta_{}\right\|_{2}^{2} \leqslant\left\|\theta_{i+1}^{\text {out }}-\theta_{*}\right\|_{2}^{2}
$$

Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S}, Projected GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t} t}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon=\min _{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})+\epsilon
$$

Recall: $\vec{\theta}_{i+1}^{\text {(out) }}=\vec{\theta}_{i}-\eta \cdot \vec{\nabla} f\left(\vec{\theta}_{i}\right)$ and $\vec{\theta}_{i+1}=P_{\mathcal{S}}\left(\vec{\theta}_{i+1}^{\text {(out) })}\right)$.
Step 1: For all $i, f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\theta_{*}\right\|_{2}^{2}-\left\|\theta_{i+1}^{\text {(out) }}-\vec{\theta}_{*}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2}$.
Step 1.a: For all i, $f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\vec{\theta}_{*}\right\|_{2}^{2}-\left\|\vec{i}_{i+1}-\vec{\theta}_{*}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2}$.
Step 2: $\frac{1}{t} \sum_{i=1}^{t} f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{R^{2}}{2 \eta \cdot t}+\frac{\eta G^{2}}{2} \Longrightarrow$ Theorem.

$$
\leq \varepsilon
$$

Course Review

Randomized Methods

Randomization as a computational resource for massive datasets.

Randomized Methods

Randomization as a computational resource for massive datasets.
[. Focus on problems that are easy on small datasets but hard at massive scale - set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).

Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at massive scale - set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).
- Just the tip of the iceberg on randomized streaming/sketching/hashing algorithms. Check out 690RA if you want to learn more.

Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at massive scale - set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).
- Just the tip of the iceberg on randomized streaming/sketching/hashing algorithms. Check out 690RA if you want to learn more.
- In the process covered probability/statistics tools that are very useful beyond algorithm design: concentration inequalities, higher moment bounds, law of large numbers, central limit theorem, linearity of expectation and variance, union bound, median as a robust estimator.

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O\left(\log n / \epsilon^{2}\right)$ dimensions while preserving pairwise distances.

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O\left(\log n / \epsilon^{2}\right)$ dimensions while preserving pairwise distances.
- Connections to the weird geometry of high-dimensional space.

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O\left(\log n / \epsilon^{2}\right)$ dimensions while preserving pairwise distances.
- Connections to the weird geometry of high-dimensional space.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O\left(\log n / \epsilon^{2}\right)$ dimensions while preserving pairwise distances.
- Connections to the weird geometry of high-dimensional space.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O\left(\log n / \epsilon^{2}\right)$ dimensions while preserving pairwise distances.
- Connections to the weird geometry of high-dimensional space.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).
- Spectral graph theory - nonlinear dimension reduction and spectral clustering for community detection.

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O\left(\log n / \epsilon^{2}\right)$ dimensions while preserving pairwise distances.
- Connections to the weird geometry of high-dimensional space.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).
- Spectral graph theory - nonlinear dimension reduction and spectral clustering for community detection.
- In the process covered linear algebraic tools that are very broadly useful in ML and data science: eigendecomposition, $\left(\left(A^{\top} A\right)=\| A(A)\right.$, singular value decomposition, projection, norm transformations.

Continuous Optimization

Foundations of continuous optimization and gradient descent.

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).
- Simple extension to projected gradient descent for optimization over a convex constraint set.

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).
- Simple extension to projected gradient descent for optimization over a convex constraint set.
- Lots that we didn't cover: online and stochastic gradient descent, accelerated methods, adaptive methods, second order methods (quasi-Newton methods), practical considerations. Gave mathematical tools to understand these methods.

Thanks for a great semester!

Final Exam Questions/Review

$$
\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))
$$

(1) $\operatorname{rank}(A B) \leqslant \operatorname{rank}(A)$ and

$$
\operatorname{ank}(A B) \leqslant \operatorname{rank}(B)
$$

Final Exam Questions/Review

$$
\begin{aligned}
& \operatorname{rank}(A+B) \leqslant \operatorname{rank}(A)+\operatorname{rank}(B) \\
& {\left[\begin{array}{l}
A \\
1 \\
0
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& A=-B
\end{aligned}
$$

$$
\begin{aligned}
& A+B=0 \\
& \operatorname{rank}(A+B+C) \\
& \text { I } \operatorname{con} k(-A)+\operatorname{rank}((B) \\
& \text { t, and }(\operatorname{cis})
\end{aligned}
$$

Final Exam Questions/Review
$\operatorname{rank}(A B) \neq \operatorname{rank}(B A)$
$\xrightarrow[=k]{\operatorname{rank}\left(V^{\top}\right)} \underbrace{\operatorname{ronk}\left(V^{\top} V\right)}_{k \times k \text { ibartity }}$

$$
\operatorname{ink}\left(x x^{\top}\right)=\operatorname{rank}\left(x^{\top} x\right)
$$

