
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 25 (Final Lecture!)

1

>



Logistics

• Problem Set 5 is due Dec 12 at 11:59pm.

• Exam is next Wednesday Dec 14, from 10:30am-12:30pm in class.

• I am holding office hours Friday 12/9 2:30-4:30pm and Monday
12/12 10am-12m. Both will be held in LGRC A215.

• It would be really helpful if you could fill out SRTIs for this class
(they close Dec 23).

• http://owl.umass.edu/partners/courseEvalSurvey/uma/.

2

[



Summary

Last Class:

• Analysis of gradient descent for convex and Lipschitz functions.

This Class:

• Extend gradient descent to constrained optimization via
projected gradient descent.

• Course wrap up and review.

3

U

[



GD Analysis Proof

Theorem – GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t ≥ R2G2

ε2 iterations, η = R
G
√
t ,

and starting point within radius R of "θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f("θ∗) + ε.

Step 1: For all i, f("θi)− f("θ∗) ≤ ‖"θi−"θ∗‖2
2−‖"θi+1−"θ∗‖2

2
2η + ηG2

2

=⇒

Step 2: 1
t
∑t

i=1 f("θi)− f("θ∗) ≤ R2

2η·t +
ηG2

2 .

4

- -

- -

- - ok.¥
- - - O i : #



GD Analysis Proof

Theorem – GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t ≥ R2G2

ε2 iterations, η = R
G
√
t ,

and starting point within radius R of "θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f("θ∗) + ε.

Step 1: For all i, f("θi)− f("θ∗) ≤ ‖"θi−"θ∗‖2
2−‖"θi+1−"θ∗‖2

2
2η + ηG2

2 =⇒

Step 2: 1
t
∑t

i=1 f("θi)− f("θ∗) ≤ R2

2η·t +
ηG2

2 .

4

] convexityLifschitz

-

(telescoping am)
-
algebra

< E



Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

"θ∗ = argmin
"θ∈S

f("θ),

where S is a convex set.

Definition – Convex Set: A set S ⊆ Rd is convex if and only if,
for any "θ1, "θ2 ∈ S and λ ∈ [0, 1]:

(1− λ)"θ1 + λ · "θ2 ∈ S

E.g. S = {"θ ∈ Rd : ‖"θ‖2 ≤ 1}.

5

÷



Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

"θ∗ = argmin
"θ∈S

f("θ),

where S is a convex set.

Definition – Convex Set: A set S ⊆ Rd is convex if and only if,
for any "θ1, "θ2 ∈ S and λ ∈ [0, 1]:

(1− λ)"θ1 + λ · "θ2 ∈ S

E.g. S = {"θ ∈ Rd : ‖"θ‖2 ≤ 1}.

5

-
I i s potma

112i s convex

- .

com:& 9€. the
n o nconvex



Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

"θ∗ = argmin
"θ∈S

f("θ),

where S is a convex set.

Definition – Convex Set: A set S ⊆ Rd is convex if and only if,
for any "θ1, "θ2 ∈ S and λ ∈ [0, 1]:

(1− λ)"θ1 + λ · "θ2 ∈ S

E.g. S = {"θ ∈ Rd : ‖"θ‖2 ≤ 1}.

5

-

→ 110,11251, 1101151

€19 114-NO,+ dallas)
(triangleinequality



Projected Gradient Descent

For any convex set let PS(·) denote the projection function onto S .

• PS("y) = argmin"θ∈S ‖"θ −"y‖2.

• For S = {"θ ∈ Rd : ‖"θ‖2 ≤ 1} what is PS("y)?

• For S being a k dimensional subspace of Rd, what is PS("y)?

Projected Gradient Descent

• Choose some initialization "θ1 and set η = R
G
√
t .

• For i = 1, . . . , t− 1

• "θ(out)i+1 = "θi − η · "∇f("θi)
• "θi+1 = PS("θ

(out)
i+1 ).

• Return θ̂ = argmin"θi f(
"θi).

6

¥15 g o
9%



Projected Gradient Descent

For any convex set let PS(·) denote the projection function onto S .

• PS("y) = argmin"θ∈S ‖"θ −"y‖2.

• For S = {"θ ∈ Rd : ‖"θ‖2 ≤ 1} what is PS("y)?

• For S being a k dimensional subspace of Rd, what is PS("y)?

Projected Gradient Descent

• Choose some initialization "θ1 and set η = R
G
√
t .

• For i = 1, . . . , t− 1

• "θ(out)i+1 = "θi − η · "∇f("θi)
• "θi+1 = PS("θ

(out)
i+1 ).

• Return θ̂ = argmin"θi f(
"θi).

6

Q

§¥5 PsCy)= §q



Projected Gradient Descent

For any convex set let PS(·) denote the projection function onto S .

• PS("y) = argmin"θ∈S ‖"θ −"y‖2.

• For S = {"θ ∈ Rd : ‖"θ‖2 ≤ 1} what is PS("y)?

• For S being a k dimensional subspace of Rd, what is PS("y)?

Projected Gradient Descent

• Choose some initialization "θ1 and set η = R
G
√
t .

• For i = 1, . . . , t− 1

• "θ(out)i+1 = "θi − η · "∇f("θi)
• "θi+1 = PS("θ

(out)
i+1 ).

• Return θ̂ = argmin"θi f(
"θi).

6

✓ has othonormal cols. spanning S .

Bly) : wtf



Projected Gradient Descent

For any convex set let PS(·) denote the projection function onto S .

• PS("y) = argmin"θ∈S ‖"θ −"y‖2.

• For S = {"θ ∈ Rd : ‖"θ‖2 ≤ 1} what is PS("y)?

• For S being a k dimensional subspace of Rd, what is PS("y)?

Projected Gradient Descent

• Choose some initialization "θ1 and set η = R
G
√
t .

• For i = 1, . . . , t− 1

• "θ(out)i+1 = "θi − η · "∇f("θi)
• "θi+1 = PS("θ

(out)
i+1 ).

• Return θ̂ = argmin"θi f(
"θi).

6

§÷÷%
qq.f.oi.i
t Ditz



Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem – Projection to a convex set: For any convex set S ⊆
Rd, "y ∈ Rd, and "θ ∈ S ,

‖PS("y)− "θ‖2 ≤ ‖"y− "θ‖2.

7



Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem – Projection to a convex set: For any convex set S ⊆
Rd, "y ∈ Rd, and "θ ∈ S ,

‖PS("y)− "θ‖2 ≤ ‖"y− "θ‖2.

7

- -

p r i v y -÷:b.÷÷÷O¥ *§*



Projected Gradient Descent Analysis

Theorem – Projected GD: For convex G-Lipschitz function f, and
convex set S , Projected GD run with t ≥ R2G2

ε2 iterations, η = R
G
√
t ,

and starting point within radius R of "θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f("θ∗) + ε = min
"θ∈S

f("θ) + ε

Recall: "θ(out)i+1 = "θi − η · "∇f("θi) and "θi+1 = PS("θ
(out)
i+1 ).

Step 1: For all i, f("θi)− f("θ∗) ≤
‖"θi−θ∗‖2

2−‖"θ(out)
i+1 −"θ∗‖2

2
2η + ηG2

2 .

Step 1.a: For all i, f("θi)− f("θ∗) ≤ ‖"θi−"θ∗‖2
2−‖"θi+1−"θ∗‖2

2
2η + ηG2

2 .

Step 2: 1
t
∑t

i=1 f("θi)− f("θ∗) ≤ R2

2η·t +
ηG2

2 =⇒ Theorem.

8

-

O. , . .-Otts- ,



Projected Gradient Descent Analysis

Theorem – Projected GD: For convex G-Lipschitz function f, and
convex set S , Projected GD run with t ≥ R2G2

ε2 iterations, η = R
G
√
t ,

and starting point within radius R of "θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f("θ∗) + ε = min
"θ∈S

f("θ) + ε

Recall: "θ(out)i+1 = "θi − η · "∇f("θi) and "θi+1 = PS("θ
(out)
i+1 ).

Step 1: For all i, f("θi)− f("θ∗) ≤
‖"θi−θ∗‖2

2−‖"θ(out)
i+1 −"θ∗‖2

2
2η + ηG2

2 .

Step 1.a: For all i, f("θi)− f("θ∗) ≤ ‖"θi−"θ∗‖2
2−‖"θi+1−"θ∗‖2

2
2η + ηG2

2 .

Step 2: 1
t
∑t

i=1 f("θi)− f("θ∗) ≤ R2

2η·t +
ηG2

2 =⇒ Theorem.

8

=



Projected Gradient Descent Analysis

Theorem – Projected GD: For convex G-Lipschitz function f, and
convex set S , Projected GD run with t ≥ R2G2

ε2 iterations, η = R
G
√
t ,

and starting point within radius R of "θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f("θ∗) + ε = min
"θ∈S

f("θ) + ε

Recall: "θ(out)i+1 = "θi − η · "∇f("θi) and "θi+1 = PS("θ
(out)
i+1 ).

Step 1: For all i, f("θi)− f("θ∗) ≤
‖"θi−θ∗‖2

2−‖"θ(out)
i+1 −"θ∗‖2

2
2η + ηG2

2 .

Step 1.a: For all i, f("θi)− f("θ∗) ≤ ‖"θi−"θ∗‖2
2−‖"θi+1−"θ∗‖2

2
2η + ηG2

2 .

Step 2: 1
t
∑t

i=1 f("θi)− f("θ∗) ≤ R2

2η·t +
ηG2

2 =⇒ Theorem.

8

-

a -



Projected Gradient Descent Analysis

Theorem – Projected GD: For convex G-Lipschitz function f, and
convex set S , Projected GD run with t ≥ R2G2

ε2 iterations, η = R
G
√
t ,

and starting point within radius R of "θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f("θ∗) + ε = min
"θ∈S

f("θ) + ε

Recall: "θ(out)i+1 = "θi − η · "∇f("θi) and "θi+1 = PS("θ
(out)
i+1 ).

Step 1: For all i, f("θi)− f("θ∗) ≤
‖"θi−θ∗‖2

2−‖"θ(out)
i+1 −"θ∗‖2

2
2η + ηG2

2 .

Step 1.a: For all i, f("θi)− f("θ∗) ≤ ‖"θi−"θ∗‖2
2−‖"θi+1−"θ∗‖2

2
2η + ηG2

2 .

Step 2: 1
t
∑t

i=1 f("θi)− f("θ∗) ≤ R2

2η·t +
ηG2

2 =⇒ Theorem.

8

-

-
-

* Hoit, -0*115
s 110,1"-0*1122



Projected Gradient Descent Analysis

Theorem – Projected GD: For convex G-Lipschitz function f, and
convex set S , Projected GD run with t ≥ R2G2

ε2 iterations, η = R
G
√
t ,

and starting point within radius R of "θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f("θ∗) + ε = min
"θ∈S

f("θ) + ε

Recall: "θ(out)i+1 = "θi − η · "∇f("θi) and "θi+1 = PS("θ
(out)
i+1 ).

Step 1: For all i, f("θi)− f("θ∗) ≤
‖"θi−θ∗‖2

2−‖"θ(out)
i+1 −"θ∗‖2

2
2η + ηG2

2 .

Step 1.a: For all i, f("θi)− f("θ∗) ≤ ‖"θi−"θ∗‖2
2−‖"θi+1−"θ∗‖2

2
2η + ηG2

2 .

Step 2: 1
t
∑t

i=1 f("θi)− f("θ∗) ≤ R2

2η·t +
ηG2

2 =⇒ Theorem.

8

C

S E



Course Review

9

online
grad

descen
t

e x



Randomized Methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at
massive scale – set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 690RA if
you want to learn more.

• In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.

10



Randomized Methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at
massive scale – set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 690RA if
you want to learn more.

• In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.

10

[



Randomized Methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at
massive scale – set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 690RA if
you want to learn more.

• In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.

10

-



Randomized Methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at
massive scale – set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 690RA if
you want to learn more.

• In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.

10



Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/ε2)
dimensions while preserving pairwise distances.

• Connections to the weird geometry of high-dimensional space.

• Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

• Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

• Spectral graph theory – nonlinear dimension reduction and
spectral clustering for community detection.

• In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.

11



Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/ε2)
dimensions while preserving pairwise distances.

• Connections to the weird geometry of high-dimensional space.

• Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

• Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

• Spectral graph theory – nonlinear dimension reduction and
spectral clustering for community detection.

• In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.

11



Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/ε2)
dimensions while preserving pairwise distances.

• Connections to the weird geometry of high-dimensional space.

• Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

• Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

• Spectral graph theory – nonlinear dimension reduction and
spectral clustering for community detection.

• In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.

11



Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/ε2)
dimensions while preserving pairwise distances.

• Connections to the weird geometry of high-dimensional space.

• Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

• Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

• Spectral graph theory – nonlinear dimension reduction and
spectral clustering for community detection.

• In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.

11

-



Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/ε2)
dimensions while preserving pairwise distances.

• Connections to the weird geometry of high-dimensional space.

• Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

• Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

• Spectral graph theory – nonlinear dimension reduction and
spectral clustering for community detection.

• In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.

11

[



Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/ε2)
dimensions while preserving pairwise distances.

• Connections to the weird geometry of high-dimensional space.

• Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

• Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

• Spectral graph theory – nonlinear dimension reduction and
spectral clustering for community detection.

• In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.

11

÷÷÷⇒ E.si#IiiOti



Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/ε2)
dimensions while preserving pairwise distances.

• Connections to the weird geometry of high-dimensional space.

• Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

• Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

• Spectral graph theory – nonlinear dimension reduction and
spectral clustering for community detection.

• In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.

11

ytyslly
lli
KATA):wtf



Continuous Optimization

Foundations of continuous optimization and gradient descent.

• Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

• How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

• Simple extension to projected gradient descent for optimization
over a convex constraint set.

• Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods.

12



Continuous Optimization

Foundations of continuous optimization and gradient descent.

• Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

• How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

• Simple extension to projected gradient descent for optimization
over a convex constraint set.

• Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods.

12



Continuous Optimization

Foundations of continuous optimization and gradient descent.

• Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

• How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

• Simple extension to projected gradient descent for optimization
over a convex constraint set.

• Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods.

12



Continuous Optimization

Foundations of continuous optimization and gradient descent.

• Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

• How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

• Simple extension to projected gradient descent for optimization
over a convex constraint set.

• Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods.

12



Continuous Optimization

Foundations of continuous optimization and gradient descent.

• Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

• How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

• Simple extension to projected gradient descent for optimization
over a convex constraint set.

• Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods.

12



Thanks for a great semester!

13



Final Exam Questions/Review

14

r a n k(AB) S m in(ranklA), r a n k(B))

① r a nkCAB¥nklA)
pg,and -

r a n k (AB)
s rank113)

A B

(A)flip..#frying.-pay
• o

o o
s s ,

""¥¥¥r ank(A) diensions ranklaI)" '
"A)



Final Exam Questions/Review

15

rankla +B)Erankla)tranklB)
O

§i¥G%fG9)
a : - B

n¥⇒¥
¥÷""'t

" " s o

o¥I,w rankAtBto)
trankCB)trankk)



Final Exam Questions/Review

16

r a n k(AB)= r a n k(B


