COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 23

Logistics

- Problem Set 4 is due on Monday at 11:59pm.
- Given the problem set and the exam, there won't be any more quizzes.
- Problem Set 5 is extra credit and will be released over the weekend or on Monday.

Summary

Last Class Before Break: Fast computation of the SVD/eigendecomposition.

- Power method for approximating the top eigenvector of a matrix.
- Analysis of convergence rate.

Final Three Classes:

- General iterative algorithms for optimization, specifically gradient descent and its variants.
- What are these methods, when are they applied, and how do you analyze their performance?
- Small taste of what you can find in COMPSCI 5900P or 6900P.

Discrete vs. Continuous Optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

- Graph Problems: min-cut, max flow, shortest path, matchings, maximum independent set, traveling salesman problem
- Problems with discrete constraints or outputs: bin-packing, scheduling, sequence alignment, submodular maximization
- Generally searching over a finite but exponentially large set of possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

- Unconstrained convex and non-convex optimization.
- Linear programming, quadratic programming, semidefinite programming

Continuous Optimization Examples

Mathematical Setup

Given some function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$
f\left(\vec{\theta}_{\star}\right)=\min _{\vec{\theta} \in R^{d}} f(\vec{\theta})+\epsilon
$$

Typically up to some small approximation factor.
Often under some constraints:

- $\|\vec{\theta}\|_{2} \leq 1, \quad\|\vec{\theta}\|_{1} \leq 1$.
- $A \vec{\theta} \leq \vec{b}, \quad \vec{\theta}^{\top} A \vec{\theta} \geq 0$.
- $\sum_{i=1}^{d} \vec{\theta}(i) \leq c$.

Why Continuous Optimization?

Modern machine learning centers around continuous optimization.
Typical Set Up: (supervised machine learning)

- Have a model, which is a function mapping inputs to predictions (neural network, linear function, low-degree polynomial etc).
- The model is parameterized by a parameter vector (weights in a neural network, coefficients in a linear function or polynomial)
- Want to train this model on input data, by picking a parameter vector such that the model does a good job mapping inputs to predictions on your training data.

This training step is typically formulated as a continuous optimization problem.

Optimization in ML

Example: Linear Regression
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=}\langle\vec{\theta}, \vec{x}\rangle=\vec{\theta}(1) \cdot \vec{x}(1)+\ldots+\vec{\theta}(d) \cdot \vec{x}(d)$.
Parameter Vector: $\vec{\theta} \in \mathbb{R}^{d}$ (the regression coefficients)
Optimization Problem: Given data points (training points) $\vec{x}_{1}, \ldots, \vec{x}_{n}$ (the rows of data matrix $X \in \mathbb{R}^{n \times d}$) and labels $y_{1}, \ldots, y_{n} \in \mathbb{R}$, find $\vec{\theta}_{*}$ minimizing the loss function:

$$
L_{x, y}(\vec{\theta})=L(\vec{\theta}, X, \vec{y})=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

where ℓ is some measurement of how far $M_{\vec{\theta}}\left(\vec{x}_{i}\right)$ is from y_{i}.

- $\ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)=\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right)-y_{i}\right)^{2}$ (least squares regression)
- $y_{i} \in\{-1,1\}$ and $\ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)=\ln \left(1+\exp \left(-y_{i} M_{\vec{\theta}}\left(\vec{x}_{i}\right)\right)\right)$ (logistic regression)

Optimization in ML

$$
L_{x, \vec{y}}(\vec{\theta})=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

- Supervised means we have labels y_{1}, \ldots, y_{n} for the training points.
- Solving the final optimization problem has many different names: likelihood maximization, empirical risk minimization, minimizing training loss, etc.
- Continuous optimization is also very common in unsupervised learning. (PCA, spectral clustering, etc.)
- Generalization tries to explain why minimizing the loss $L_{X, \bar{y}}(\vec{\theta})$ on the training points minimizes the loss on future test points. I.e., makes us have good predictions on future inputs.

Optimization Algorithms

Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things:

- The form of f (in ML, depends on the model \& loss function).
- Any constraints on $\vec{\theta}$ (e.g., $\|\vec{\theta}\|<c$).
- Computational constraints, such as memory constraints.

$$
L_{x, \vec{y}}(\vec{\theta})=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

What are some popular optimization algorithms?

Gradient Descent

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied to almost any continuous function we care about optimizing.
- Often not the 'best' choice for any given function, but it is the approach of choice in ML since it is simple, general, and often works very well.
- At each step, tries to move towards the lowest nearby point in the function that is can - in the opposite direction of the gradient.

Multivariate Calculus Review

Let $\vec{e}_{i} \in \mathbb{R}^{d}$ denote the $i^{\text {th }}$ standard basis vector, $\vec{e}_{i}=\underbrace{[0,0,1,0,0, \ldots, 0]}_{1 \text { at position } i}$.
Partial Derivative:

$$
\frac{\partial f}{\partial \vec{\theta}(i)}=\lim _{\epsilon \rightarrow 0} \frac{f\left(\vec{\theta}+\epsilon \cdot \vec{e}_{i}\right)-f(\vec{\theta})}{\epsilon}
$$

Directional Derivative:

$$
D_{\vec{v}} f(\vec{\theta})=\lim _{\epsilon \rightarrow 0} \frac{f(\vec{\theta}+\epsilon \vec{V})-f(\vec{\theta})}{\epsilon}
$$

Multivariate Calculus Review

Gradient: Just a 'list' of the partial derivatives.

$$
\vec{\nabla} f(\vec{\theta})=\left[\begin{array}{c}
\frac{\partial f}{\partial \vec{\theta}(1)} \\
\frac{\partial f}{\partial \vec{\theta}(2)} \\
\vdots \\
\frac{\partial f}{\partial \vec{\theta}(())}
\end{array}\right]
$$

Directional Derivative in Terms of the Gradient:

$$
D_{\vec{v}} f(\vec{\theta})=\langle\vec{v}, \vec{\nabla} f(\vec{\theta})\rangle .
$$

Function Access

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.
Gradient Evaluation: Can compute $\vec{\nabla} f(\vec{\theta})$ for any $\vec{\theta}$.
In neural networks:

- Function evaluation is called a forward pass (propogate an input through the network).
- Gradient evaluation is called a backward pass (compute the gradient via chain rule, using backpropagation).

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)}=\vec{\theta}^{(i-1)}+\eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f\left(\vec{\theta}^{(i-1)}+\eta \vec{V}\right)$.

$$
D_{\vec{v}} f(\vec{\theta})=\lim _{\epsilon \rightarrow 0} \frac{f(\vec{\theta}+\epsilon \vec{V})-f(\vec{\theta})}{\epsilon} \cdot D_{\vec{v}} f\left(\vec{\theta}^{(i-1)}\right)=\lim _{\epsilon \rightarrow 0} \frac{f\left(\vec{\theta}^{(i-1)}+\epsilon \vec{V}\right)-f\left(\vec{\theta}^{(i-1)}\right)}{\epsilon} .
$$

So for small η :

$$
\begin{aligned}
f\left(\vec{\theta}^{(i)}\right)-f\left(\vec{\theta}^{(i-1)}\right)=f\left(\vec{\theta}^{(i-1)}+\eta \vec{v}\right)-f\left(\vec{\theta}^{(i-1)}\right) & \approx \eta \cdot D_{\vec{v}} f\left(\vec{\theta}^{(i-1)}\right) \\
& =\eta \cdot\left\langle\vec{v}, \vec{\nabla} f\left(\vec{\theta}^{(i-1)}\right)\right\rangle .
\end{aligned}
$$

We want to choose \vec{v} minimizing $\left\langle\vec{v}, \vec{\nabla} f\left(\vec{\theta}^{(i-1)}\right)\right\rangle$ - i.e., pointing in the direction of $\vec{\nabla} f\left(\vec{\theta}^{(i-1)}\right)$ but with the opposite sign.

Gradient Descent Psuedocode

Gradient Descent

- Choose some initialization $\vec{\theta}^{(0)}$.
- For $i=1, \ldots, t$
- $\vec{\theta}^{(i)}=\vec{\theta}^{(i-1)}-\eta \nabla f\left(\vec{\theta}^{(i-1)}\right)$
- Return $\vec{\theta}^{(t)}$, as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)

- For now assume η stays the same in each iteration.

When Does Gradient Descent Work?

$\theta \in \mathbb{R} \quad \nabla f(\theta) \in \mathbb{R}$

Gradient Descent Update: $\vec{\theta}_{i+1}=\vec{\theta}_{i}-\eta \nabla f\left(\vec{\theta}_{i}\right)$

Convexity

Definition - Convex Function: A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if, for any $\vec{\theta}_{1}, \vec{\theta}_{2} \in \mathbb{R}^{d}$ and $\lambda \in[0,1]$:

$$
(1-\lambda) \cdot f\left(\overrightarrow{\theta_{1}}\right)+\lambda \cdot f\left(\overrightarrow{\theta_{2}}\right) \geq f\left((1-\lambda) \cdot \overrightarrow{\theta_{1}}+\lambda \cdot \overrightarrow{\theta_{2}}\right)
$$

Convexity

Corollary - Convex Function: A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if, for any $\vec{\theta}_{1}, \vec{\theta}_{2} \in \mathbb{R}^{d}$ and $\lambda \in[0,1]$:

$$
f\left(\overrightarrow{\theta_{2}}\right)-f\left(\overrightarrow{\theta_{1}}\right) \geq \vec{\nabla} f\left(\vec{\theta}_{1}\right)^{\top}\left(\vec{\theta}_{2}-\overrightarrow{\theta_{1}}\right)
$$

Conditions for Gradient Descent Convergence

Convex Functions: After sufficient iterations, if the step size η is chosen appropriately, gradient descent will converge to a approximate minimizer $\hat{\theta}$ with:

$$
f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon=\min _{\vec{\theta}} f(\vec{\theta})+\epsilon .
$$

Examples: least squares regression, logistic regression, sparse regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent will converge to a approximate stationary point $\hat{\theta}$ with:

$$
\|\nabla f(\hat{\theta})\|_{2} \leq \epsilon .
$$

Examples: neural networks, clustering, mixture models.

Lipschitz Functions

$\theta \in \mathbb{R} \quad \nabla f(\theta) \in \mathbb{R}$

> Gradient Descent Update:
> $\vec{\theta}_{i+1}=\vec{\theta}_{i}-\eta \nabla f\left(\vec{\theta}_{i}\right)$

Need to assume that the function is Lipschitz (size of gradient is bounded): There is some G s.t.:

$$
\forall \vec{\theta}: \quad\|\vec{\nabla} f(\vec{\theta})\|_{2} \leq G \Leftrightarrow \forall \vec{\theta}_{1}, \vec{\theta}_{2}: \quad\left|f\left(\vec{\theta}_{1}\right)-f\left(\vec{\theta}_{2}\right)\right| \leq G \cdot\left\|\vec{\theta}_{1}-\vec{\theta}_{2}\right\|_{2}
$$

Well-Behaved Functions

Definition - Convex Function: A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if, for any $\vec{\theta}_{1}, \vec{\theta}_{2} \in \mathbb{R}^{d}$ and $\lambda \in[0,1]$:

$$
(1-\lambda) \cdot f\left(\vec{\theta}_{1}\right)+\lambda \cdot f\left(\vec{\theta}_{2}\right) \geq f\left((1-\lambda) \cdot \vec{\theta}_{1}+\lambda \cdot \vec{\theta}_{2}\right)
$$

Corollary - Convex Function: A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if, for any $\vec{\theta}_{1}, \vec{\theta}_{2} \in \mathbb{R}^{d}$ and $\lambda \in[0,1]$:

$$
f\left(\overrightarrow{\theta_{2}}\right)-f\left(\vec{\theta}_{1}\right) \geq \vec{\nabla} f\left(\vec{\theta}_{1}\right)^{\top}\left(\vec{\theta}_{2}-\vec{\theta}_{1}\right)
$$

Definition - Lipschitz Function: A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is G Lipschitz if $\|\vec{\nabla} f(\vec{\theta})\|_{2} \leq G$ for all $\vec{\theta}$.

