COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 23

Logistics

- Problem Set 4 is due on Monday at 11:59pm.
- Given the problem set and the exam, there wont be any more quizzes.
- Problem Set 5 is extra credit and will be released over the weekend or on Monday.

Summary

Last Class Before Break: Fast computation of the SVD/eigendecomposition.

- Power method for approximating the top eigenvector of a matrix.
- Analysis of convergence rate.

Final Three Classes:
-General iterative algorithms for optimization, specifically gradient descent and its variants.

- What are these methods, when are they applied, and how do

2 you analyze their performance?

- Small taste of what you can find in COMPSCI 5900P or 6900P.

Discrete vs. Continuous Optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

- Graph Problems: min-cut, max flow, shortest path, matchings, maximum independent set, traveling salesman problem
- Problems with discrete constraints or outputs: bin-packing, scheduling, sequence alignment, submodular maximization
- Generally searching over a finite but exponentially large set of possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

- Unconstrained convex and non-convex optimization.

Linear programming, quadratic programming, semidefinite programming

Continuous Optimization Examples

Mathematical Setup

θ

Given some function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{\text {, find }} \vec{\theta}_{\star}$ with:

$$
\underline{f\left(\vec{\theta}_{*}\right)}=\min _{\vec{\theta} \in R^{d}} f(\vec{\theta})
$$

Mathematical Setup

Given some function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$
\underline{f\left(\vec{\theta}_{\star}\right)=\min _{\vec{\theta} \in R^{d}} f(\vec{\theta})+\epsilon}
$$

Typically up to some small approximation factor.

Mathematical Setup

Given some function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$
\underbrace{f\left(\vec{\theta}_{\star}\right)=\min _{\vec{\theta} \in R^{d}} f(\vec{\theta})+\epsilon}
$$

Typically up to some small approximation factor.
often under some constraints:

$$
\begin{aligned}
& \cdot\|\vec{\theta}\|_{2} \leq 1, \quad\|\vec{\theta}\|_{1} \leq 1 . \\
& \sqrt{\left[\begin{array}{l}
A \vec{\theta}
\end{array} \leq \vec{b},\right.} \vec{\theta}^{\top} A \vec{\theta} \geq 0 . \\
& =\sum_{i=1}^{d} \vec{\theta}(i) \leq c . \\
& \text { entryuise } \\
& A \theta=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad b=\left[\begin{array}{c}
1.5 \\
3 \\
6
\end{array}\right]
\end{aligned}
$$

Why Continuous Optimization?

Modern machine learning centers around continuous optimization.
Typical Set Up: (supervised machine learning)

- Have a model, which is a function mapping inputs to predictions (neural network, linear function, low-degree polynomial etc).
- The model is parameterized by a parameter vector (weights in a neural network, coefficients in a linear function or polynomial)
- Want to train this model on input data, by picking a parameter vector such that the model does a good job mapping inputs to predictions on your training data.

This training step is typically formulated as a continuous optimization problem.

Optimization in ML

Example: Linear Regression

Optimization in ML
Example: Linear Regression ,hose prawn)
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=}\langle\vec{\theta}, \vec{x}\rangle$
predicted price

Optimization in ML

Example: Linear Regression
Hhathrooshs
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=}\langle\vec{\theta}, \vec{x}\rangle=\underbrace{\vec{\theta}(1) \cdot \vec{x}(1)}+\ldots+\underbrace{\vec{\theta}(d) \cdot \vec{x}(d)}$.

Optimization in ML

Example: Linear Regression
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=}\langle\vec{\theta}, \vec{x}\rangle=\vec{\theta}(1) \cdot \vec{x}(1)+\ldots+\vec{\theta}(d) \cdot \vec{x}(d)$.
Parameter Vector: $\vec{\theta} \in \mathbb{R}^{d}$ (the regression coefficients)

Optimization in ML

Example: Linear Regression
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=}\langle\vec{\theta}, \vec{x}\rangle=\vec{\theta}(1) \cdot \vec{x}(1)+\ldots+\vec{\theta}(d) \cdot \vec{x}(d)$.
Parameter Vector: $\vec{\theta} \in \mathbb{R}^{d}$ (the regression coefficients)
Optimization Problem: Given data points (training points) $\overrightarrow{\underline{X}}_{1}, \ldots, \vec{X}_{n}$ (the rows of data matrix $X \in \mathbb{R}^{n \times d}$) and labels $\underline{y_{1}, \ldots, y_{n} \in \mathbb{R} \text {, find } \vec{\theta}_{*}}$ minimizing the loss function:

$$
\underline{\underline{L(\vec{\theta}, X, \vec{y})}}=\underline{\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)}
$$

where ℓ is some measurement of how far $M_{\vec{\theta}}\left(\vec{x}_{i}\right)$ is from y_{i}.

Optimization in ML

Example: Linear Regression
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=}\langle\vec{\theta}, \vec{x}\rangle=\vec{\theta}(1) \cdot \vec{x}(1)+\ldots+\vec{\theta}(d) \cdot \vec{x}(d)$.
Parameter Vector: $\vec{\theta} \in \mathbb{R}^{d}$ (the regression coefficients)
Optimization Problem: Given data points (training points) $\vec{x}_{1}, \ldots, \vec{x}_{n}$ (the rows of data matrix $X \in \mathbb{R}^{n \times d}$) and labels $y_{1}, \ldots, y_{n} \in \mathbb{R}$, find $\vec{\theta}_{*}$ minimizing the loss function:

$$
\underline{L(\vec{\theta}, \mathrm{X}, \vec{y})}=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

where ℓ is some measurement of how far $M_{\vec{\theta}}\left(\vec{x}_{i}\right)$ is from y_{i}.

- $\ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)=\left(M_{\vec{\Omega}}\left(\vec{x}_{i}\right)-y_{i}\right)^{2}$ (least squares regression)
- $\begin{aligned} & y_{i} \in\{-1,1\} \\ & \text { regression })\end{aligned}$ and $\ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)=\ln \left(1+\underline{\left.\exp \left(-y_{i} M_{\vec{\theta}}\left(\vec{x}_{i}\right)\right)\right) \text { (logistic }}\right.$

Optimization in ML

Example: Linear Regression
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=}\langle\vec{\theta}, \vec{x}\rangle=\vec{\theta}(1) \cdot \vec{x}(1)+\ldots+\vec{\theta}(d) \cdot \vec{x}(d)$.
Parameter Vector: $\vec{\theta} \in \mathbb{R}^{d}$ (the regression coefficients)
Optimization Problem: Given data points (training points) $\vec{x}_{1}, \ldots, \vec{x}_{n}$ (the rows of data matrix $X \in \mathbb{R}^{n \times d}$) and labels $y_{1}, \ldots, y_{n} \in \mathbb{R}$, find $\vec{\theta}_{*}$ minimizing the loss function:

$$
\stackrel{L_{x, y}(\vec{\theta})}{L(\vec{\theta}, X, \vec{y})}=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

where ℓ is some measurement of how far $M_{\vec{\theta}}\left(\vec{x}_{i}\right)$ is from y_{i}.

- $\ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)=\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right)-y_{i}\right)^{2}$ (least squares regression)
- $y_{i} \in\{-1,1\}$ and $\ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)=\ln \left(1+\exp \left(-y_{i} M_{\vec{\theta}}\left(\vec{x}_{i}\right)\right)\right.$) (logistic regression)

Optimization in ML

- Supervised means we have labels y_{1}, \ldots, y_{n} for the training points.
- Solving the final optimization problem has many different name §: likelihood maximization, empirical risk minimization, minimizing training loss, etc.
- Continuous optimization is also very common in unsupervised learning. (PCA, spectral clustering, etc.)
Generalization tries to explain why minimizing the loss $L_{x, \vec{y}}(\vec{\theta})$ on the training points minimizes the loss on future test points. I.e., makes us have good predictions on future inputs.

Optimization Algorithms

Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things: $C_{x, y}(\vec{\theta})$

- The form of f (in ML, depends on the model \& loss function).
- Any constraints on $\vec{\theta}$ (e.g., $\|\vec{\theta}\|<c$).
- Computational constraints, such as memory constraints.

$$
L_{x, \vec{y}}(\vec{\theta})=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

Optimization Algorithms
Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things:

- The form of f (in ML, depends on the model \& loss function).
- Any constraints on $\vec{\theta}$ (e.g., $\|\vec{\theta}\|<c$).
- Computational constraints, such as memory constraints.

$$
L_{x, \vec{y}}(\vec{\theta})=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

What are some popular optimization algorithms? "semen ord"
Stock asti obedient descent BFGS, L-BF6S online grabert descent

Gradient Descent

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied to almost any continuous function we care about optimizing.
- Often not the 'best' choice for any given function, but it is the approach of choice in ML since it is simple, general, and often works very well.
- At each step, tries to move towards the lowest nearby point in the function that is can - in the opposite direction of the gradient.

$$
u \cdot D_{v}\left(\theta^{i-1}\right)
$$

Multivariate Calculus Review

Let $\vec{e}_{i} \in \mathbb{R}^{d}$ denote the $i^{\text {th }}$ standard basis vector, $\vec{e}_{i}=\underbrace{[0,0,1,0,0, \ldots, 0]}_{1 \text { at position } i}$.

Multivariate Calculus Review

Let $\vec{e}_{i} \in \mathbb{R}^{d}$ denote the $i^{\text {th }}$ standard basis vector,

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\vec{e}_{i}=\underbrace{[0,0,1,0,0, \ldots, 0]}_{1 \text { at position } i} .
$$

Partial Derivative:

$$
[\theta(1), \theta(2), \ldots \theta(i)+\varepsilon, \theta(i+1) \ldots]
$$

$$
\frac{\partial f}{\partial \vec{\theta}(i)}=\lim _{\epsilon \rightarrow 0} \frac{f\left(\vec{\theta}+\epsilon \cdot \vec{e}_{i}\right)-f(\vec{\theta})}{\epsilon}
$$

$$
\frac{\partial f}{d x}=\lim _{\varepsilon \uparrow 0} \frac{f(x+\varepsilon)-f(x)}{\varepsilon}
$$

Multivariate Calculus Review

Let $\vec{e}_{i} \in \mathbb{R}^{d}$ denote the $i^{\text {th }}$ standard basis vector, $\vec{e}_{i}=\underbrace{[0,0,1,0,0, \ldots, 0]}_{1 \text { at position } i}$.
Partial Derivative:

$$
\frac{\partial f}{\partial \vec{\theta}(i)}=\lim _{\epsilon \rightarrow 0} \frac{f\left(\vec{\theta}+\epsilon \cdot \vec{e}_{i}\right)-f(\vec{\theta})}{\epsilon} \text {. }
$$

Directional Derivative: $\|V\|_{2}=1$

$$
\begin{aligned}
& D_{\vec{v}} f(\vec{\theta})=\lim _{\epsilon \rightarrow 0} \frac{f(\vec{\theta}+\epsilon \vec{v})-f(\vec{\theta})}{\epsilon} . \\
& (\text { divectron } \\
& \text { of Step }
\end{aligned}
$$

Multivariate Calculus Review

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R} \quad \forall f(\vec{\theta}) \in \mathbb{R}^{d}
$$

Gradient: Just a 'list' of the partial derivatives.

$$
\vec{\nabla} f(\vec{\theta})=\left[\begin{array}{c}
\frac{\partial f}{\partial \vec{\theta}(1)} \\
\frac{\partial f}{\partial \vec{\theta}(2)} \\
\vdots \\
\frac{\partial f}{\partial \vec{\theta}(())}
\end{array}\right]
$$

Multivariate Calculus Review

Gradient: Just a 'list' of the partial derivatives.

Directional Derivative in Terms of the Gradient:
$V=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& \xrightarrow{\substack{\mathbb{R} \\
D_{\vec{v}} f(\vec{\theta})}}=\underbrace{\begin{array}{l}
\mathbb{R}^{2} \mathbb{R}^{2} \\
\langle\vec{v}, \vec{\nabla} f(\vec{\theta})\rangle
\end{array}} \\
& v(1) \cdot \frac{d f}{\partial \theta(1)}+v(2) \cdot \frac{\partial f}{\partial \theta(2)}+\ldots .
\end{aligned}
$$

Function Access

$$
x^{2}+3 x+1
$$

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.
Gradient Evaluation: Can compute $\vec{\nabla} f(\vec{\theta})$ for any $\vec{\theta}$.

Function Access

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.
Gradient Evaluation: Can compute $\vec{\nabla} f(\vec{\theta})$ for any $\vec{\theta}$.
In neural networks:

- Function evaluation is called a forward pass (propogate an input through the network).
- Gradient evaluation is called a backward pass (compute the gradient via chain rule, using backpropagation).

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)}=\underline{\vec{\theta}^{(i-1)}}+\eta \overrightarrow{\mathrm{V}}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f\left(\vec{\theta}^{(i-1)}+\eta \vec{V}\right)$.
$f\left(\theta^{(i+1)}\right)$

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)}=\vec{\theta}^{(i-1)}+\eta \overrightarrow{\mathrm{V}}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f\left(\vec{\theta}^{(i-1)}+\eta \vec{v}\right)$.

$$
D_{\vec{v}} f(\vec{\theta})=\lim _{\epsilon \rightarrow 0} \frac{f(\vec{\theta}+\epsilon \vec{V})-f(\vec{\theta})}{\epsilon} .
$$

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)}=\vec{\theta}^{(i-1)}+\eta \overrightarrow{\mathrm{v}}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f\left(\vec{\theta}^{(i-1)}+\eta \vec{v}\right)$.

$$
\underline{D_{\vec{v}} f\left(\vec{\theta}^{(i-1)}\right)}=\lim _{\epsilon \rightarrow 0} \frac{f\left(\vec{\theta}^{(i-1)}+\epsilon \vec{V}\right)-f\left(\vec{\theta}^{(i-1)}\right)}{\epsilon} .
$$

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)}=\vec{\theta}^{(i-1)}+\eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f\left(\vec{\theta}^{(i-1)}+\eta \overrightarrow{\mathrm{V}}\right)$.

$$
D_{\vec{v}} f\left(\vec{\theta}^{(i-1)}\right)=\lim _{\epsilon \rightarrow 0} \frac{f\left(\vec{\theta}^{(i-1)}+\epsilon \vec{V}\right)-f\left(\vec{\theta}^{(i-1)}\right)}{\epsilon} .
$$

So for small η :

$$
\left.\frac{f\left(\vec{\theta}^{(i)}\right)-f\left(\vec{\theta}^{(i-1)}\right)}{\text { inni } \cdot \boldsymbol{z} \boldsymbol{z}}\right)=f\left(\vec{\theta}^{(i-1)}+\eta \vec{v}\right)-f\left(\vec{\theta}^{(i-1)}\right)
$$

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)}=\vec{\theta}^{(i-1)}+\eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f\left(\vec{\theta}^{(i-1)}+\eta \overrightarrow{\mathrm{V}}\right)$.

$$
\|v\|_{2}=1
$$

$$
D_{\vec{v}} f\left(\vec{\theta}^{(i-1)}\right)=\lim _{\epsilon \rightarrow 0} \frac{f\left(\vec{\theta}^{(i-1)}+\epsilon \vec{V}\right)-f\left(\vec{\theta}^{(i-1)}\right)}{\epsilon} .
$$

So for small η :

$$
f(\underbrace{f\left(\vec{\theta}^{(i)}\right)-f\left(\vec{\theta}^{(i-1)}\right.}_{\text {minimize }})=f(\overbrace{}^{\left(\vec{\theta}^{(i-1)}+\eta \vec{v}\right)-f\left(\vec{\theta}^{(i-1)}\right) \approx \eta \cdot D_{\vec{v}} f\left(\vec{\theta}^{(i-1)}\right)}
$$

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)}=\vec{\theta}^{(i-1)}+\eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f\left(\vec{\theta}^{(i-1)}+\eta \overrightarrow{\mathrm{V}}\right)$.

$$
D_{\vec{v}} f\left(\vec{\theta}^{(i-1)}\right)=\lim _{\epsilon \rightarrow 0} \frac{f\left(\vec{\theta}^{(i-1)}+\epsilon \vec{V}\right)-f\left(\vec{\theta}^{(i-1)}\right)}{\epsilon} .
$$

So for small η :

$$
\begin{aligned}
f\left(\vec{\theta}^{(i)}\right)-f\left(\vec{\theta}^{(i-1)}\right)=f\left(\vec{\theta}^{(i-1)}+\eta \vec{v}\right)-f\left(\vec{\theta}^{(i-1)}\right) & \approx \eta \cdot D_{\nabla} f\left(\vec{\theta}^{(i-1)}\right) \\
& =\eta \cdot\left\langle\vec{v}, \vec{\nabla} f\left(\vec{\theta}^{(i-1)}\right)\right\rangle .
\end{aligned}
$$

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)}=\vec{\theta}^{(i-1)}+\eta \overrightarrow{\mathrm{v}}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f\left(\vec{\theta}^{(i-1)}+\eta \overrightarrow{\mathrm{V}}\right)$.

$$
D_{\vec{v}} f\left(\vec{\theta}^{(i-1)}\right)=\lim _{\epsilon \rightarrow 0} \frac{f\left(\vec{\theta}^{(i-1)}+\epsilon \vec{V}\right)-f\left(\vec{\theta}^{(i-1)}\right)}{\epsilon} .
$$

So for small η :

$$
\begin{aligned}
f\left(\vec{\theta}^{(i)}\right)-f\left(\vec{\theta}^{(i-1)}\right)=f\left(\vec{\theta}^{(i-1)}+\eta \vec{v}\right)-f\left(\vec{\theta}^{(i-1)}\right) & \approx \eta \cdot D_{\nabla} f\left(\vec{\theta}^{(i-1)}\right) \\
& =\eta \cdot\left\langle\vec{v}\left(\overrightarrow{\theta^{\prime-1}}\right)\right. \\
& \left.=\vec{\nabla} f\left(\vec{\theta}^{(i-1)}\right)\right\rangle .
\end{aligned}
$$

We want to choose \vec{v} minimizing $\left\langle\vec{v}, \vec{\nabla} f\left(\vec{\theta}^{(i-1)}\right)\right\rangle$ - i.e., pointing in the direction of $\vec{\nabla} f\left(\vec{\theta}^{(i-1)}\right)$ but with the opposite sign.

Gradient Descent Psuedocode

Gradient Descent

- Choose some initialization $\vec{\theta}^{(0)}$.
- For $i=1, \ldots, t$

$$
\dot{-\vec{\theta}^{(i)}}=\vec{\theta}^{(i-1)}-\eta \nabla f\left(\vec{\theta}^{(i-1)}\right)
$$

- Return $\vec{\theta}^{(t)}$ as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)

Gradient Descent Psuedocode

Gradient Descent

- Choose some initialization $\vec{\theta}(0)$.
$[$ - For $i=1, \ldots, t$
- $\vec{\theta}^{(i)}=\vec{\theta}^{(i-1)}-\eta \nabla f\left(\vec{\theta}^{(i-1)}\right)$

- Return $\vec{\theta}^{(t)}$, as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)

- For now assume η stays the same in each iteration.

When Does Gradient Descent Work?

Gradient Descent Update: $\vec{\theta}_{i+1}=\overrightarrow{\theta_{i}}-\eta \nabla f\left(\vec{\theta}_{i}\right)$

