
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 23

1

Logistics

• Problem Set 4 is due on Monday at 11:59pm.
• Given the problem set and the exam, there won’t be any
more quizzes.

• Problem Set 5 is extra credit and will be released over the
weekend or on Monday.

2

LGRC A215

Y pset worth 10%

5' t p u t 5% t

Summary

Last Class Before Break: Fast computation of the
SVD/eigendecomposition.

• Power method for approximating the top eigenvector of a
matrix.

• Analysis of convergence rate.

Final Three Classes:

• General iterative algorithms for optimization, specifically
gradient descent and its variants.

• What are these methods, when are they applied, and how do
you analyze their performance?

• Small taste of what you can find in COMPSCI 590OP or 690OP.

3

[=
a -
- I

-

Discrete vs. Continuous Optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

• Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

• Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

• Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

• Unconstrained convex and non-convex optimization.

• Linear programming, quadratic programming, semidefinite
programming

4

[

E

Continuous Optimization Examples

5

(: -

I . -

Mathematical Setup

Given some function f : Rd → R, find !θ! with:

f(!θ!) = min
"θ∈Rd

f(!θ)

+ ε

Typically up to some small approximation factor.

Often under some constraints:

• ‖!θ‖2 ≤ 1, ‖!θ‖1 ≤ 1.
• A!θ ≤ !b, !θTA!θ ≥ 0.
•
∑d

i=1
!θ(i) ≤ c.

6

O

- -

- -

Mathematical Setup

Given some function f : Rd → R, find !θ! with:

f(!θ!) = min
"θ∈Rd

f(!θ) + ε

Typically up to some small approximation factor.

Often under some constraints:

• ‖!θ‖2 ≤ 1, ‖!θ‖1 ≤ 1.
• A!θ ≤ !b, !θTA!θ ≥ 0.
•
∑d

i=1
!θ(i) ≤ c.

6

-

Mathematical Setup

Given some function f : Rd → R, find !θ! with:

f(!θ!) = min
"θ∈Rd

f(!θ) + ε

Typically up to some small approximation factor.

Often under some constraints:

• ‖!θ‖2 ≤ 1, ‖!θ‖1 ≤ 1.
• A!θ ≤ !b, !θTA!θ ≥ 0.
•
∑d

i=1
!θ(i) ≤ c.

6

-

a -
tentin
g... §, tif?)

Why Continuous Optimization?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

• Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

• The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

• Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.

7

-

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉

= !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d)

.

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉

= !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d)

.

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8

✓
horsepram,

- - - -

(predictedprice

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8

#
bathrooms {gift.

- x x

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8

-

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8

→

- ' = .

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8

÷ ,

Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) = L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8

g o @

Optimization in ML

LX,!y(!θ) =
n∑

i=1

$(M!θ(!xi), yi)

• Supervised means we have labels y1, . . . , yn for the training
points.

• Solving the final optimization problem has many different
names: likelihood maximization, empirical risk minimization,
minimizing training loss, etc.

• Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

• Generalization tries to explain why minimizing the loss LX,!y(!θ)
on the training points minimizes the loss on future test points.
I.e., makes us have good predictions on future inputs.

9

←
a -

[- 0

Optimization Algorithms

Choice of optimization algorithm for minimizing f(!θ) will depend on
many things:

• The form of f (in ML, depends on the model & loss function).

• Any constraints on !θ (e.g., ‖!θ‖ < c).

• Computational constraints, such as memory constraints.

LX,!y(!θ) =
n∑

i=1

$(M!θ(!xi), yi)

What are some popular optimization algorithms?

10

(x,y(8)
-

s -minims

-

Optimization Algorithms

Choice of optimization algorithm for minimizing f(!θ) will depend on
many things:

• The form of f (in ML, depends on the model & loss function).

• Any constraints on !θ (e.g., ‖!θ‖ < c).

• Computational constraints, such as memory constraints.

LX,!y(!θ) =
n∑

i=1

$(M!θ(!xi), yi)

What are some popular optimization algorithms?

10

§-
chaste

gradient descent ①

Fos,"[%I£
W"

online gradient descent

newton's methods
adaptie graded advert (Adam,Adapad)=

Gradient Descent

Next few classes: Gradient descent (and some important variants)

• An extremely simple greedy iterative method, that can be
applied to almost any continuous function we care about
optimizing.

• Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

• At each step, tries to move towards the lowest nearby point in
the function that is can – in the opposite direction of the
gradient.

11

N .Dv(gig
→

MY→ 112 I % 8
"oogooo:D

- .

Multivariate Calculus Review

Let !ei ∈ Rd denote the ith standard basis vector,
!ei = [0, 0, 1, 0, 0, . . . , 0]︸ ︷︷ ︸

1 at position i

.

Partial Derivative:

∂f
∂!θ(i)

= lim
ε→0

f(!θ + ε · !ei)− f(!θ)
ε

.

Directional Derivative:

D"v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.

12

-

Multivariate Calculus Review

Let !ei ∈ Rd denote the ith standard basis vector,
!ei = [0, 0, 1, 0, 0, . . . , 0]︸ ︷︷ ︸

1 at position i

.

Partial Derivative:

∂f
∂!θ(i)

= lim
ε→0

f(!θ + ε · !ei)− f(!θ)
ε

.

Directional Derivative:

D"v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.

12

f : LR'sph

t o e s . .]

- - -

f i x - -

8¥= LingoI×¥fx)

Multivariate Calculus Review

Let !ei ∈ Rd denote the ith standard basis vector,
!ei = [0, 0, 1, 0, 0, . . . , 0]︸ ︷︷ ︸

1 at position i

.

Partial Derivative:

∂f
∂!θ(i)

= lim
ε→0

f(!θ + ε · !ei)− f(!θ)
ε

.

Directional Derivative:

D"v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.

12

[1 k ¥

(d i rec t ,m•-
O Pstep

Multivariate Calculus Review

Gradient: Just a ‘list’ of the partial derivatives.

!∇f(!θ) =

∂f
∂!θ(1)
∂f

∂!θ(2)
...
∂f

∂!θ(d)

Directional Derivative in Terms of the Gradient:

D!v f(!θ) = 〈!v, !∇f(!θ)〉.

13

f i Rd→ a t r e e) E Rd

Multivariate Calculus Review

Gradient: Just a ‘list’ of the partial derivatives.

!∇f(!θ) =

∂f
∂!θ(1)
∂f

∂!θ(2)
...
∂f

∂!θ(d)

Directional Derivative in Terms of the Gradient:

D!v f(!θ) = 〈!v, !∇f(!θ)〉.

13

coordinate

descent

I
112 Rdr d

I t T.i.IE. um:*,"..

Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(!θ) for any !θ.

Gradient Evaluation: Can compute !∇f(!θ) for any !θ.

In neural networks:

• Function evaluation is called a forward pass (propogate an
input through the network).

• Gradient evaluation is called a backward pass (compute
the gradient via chain rule, using backpropagation).

14

+2+3×+1

=

Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(!θ) for any !θ.

Gradient Evaluation: Can compute !∇f(!θ) for any !θ.

In neural networks:

• Function evaluation is called a forward pass (propogate an
input through the network).

• Gradient evaluation is called a backward pass (compute
the gradient via chain rule, using backpropagation).

14

E -

L

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1))

≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

15

- - - -

Ff@Citi))

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1))

≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

15

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ(i−1)) = lim
ε→0

f(!θ(i−1) + ε!v)− f(!θ(i−1))

ε
.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1))

≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

15

-

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ(i−1)) = lim
ε→0

f(!θ(i−1) + ε!v)− f(!θ(i−1))

ε
.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1))

≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

15

-

E n t e

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ(i−1)) = lim
ε→0

f(!θ(i−1) + ε!v)− f(!θ(i−1))

ε
.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1)) ≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

15

whit

wanna - - -

N o (J , F f (Oi))

%ff-rcoi.gr?.pj&--

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ(i−1)) = lim
ε→0

f(!θ(i−1) + ε!v)− f(!θ(i−1))

ε
.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1)) ≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

15

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ(i−1)) = lim
ε→0

f(!θ(i−1) + ε!v)− f(!θ(i−1))

ε
.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1)) ≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.

15

s ,f f
lo")

,

Gradient Descent Psuedocode

Gradient Descent

• Choose some initialization !θ(0).
• For i = 1, . . . , t

• !θ(i) = !θ(i−1) − η∇f(!θ(i−1))

• Return !θ(t), as an approximate minimizer of f(!θ).

Step size η is chosen ahead of time or adapted during the
algorithm (details to come.)

• For now assume η stays the same in each iteration.

16

÷
-

Gradient Descent Psuedocode

Gradient Descent

• Choose some initialization !θ(0).
• For i = 1, . . . , t

• !θ(i) = !θ(i−1) − η∇f(!θ(i−1))

• Return !θ(t), as an approximate minimizer of f(!θ).

Step size η is chosen ahead of time or adapted during the
algorithm (details to come.)

• For now assume η stays the same in each iteration.

16

s o §
b

[- I
e .

When Does Gradient Descent Work?

Gradient Descent Update: !θi+1 = !θi − η∇f(!θi)

17

- WW
÷i÷÷÷±
±÷÷*'

