COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2022. Lecture 23

I GRK, ARIS

- Problem Set 4 is due on Monday at 11:59pm.
- Given the problem set and the exam, there won't be any more quizzes.
- Problem Set 5 is extra credit and will be released over the weekend or on Monday.

Summary

Last Class Before Break: Fast computation of the SVD/eigendecomposition.

- Power method for approximating the top eigenvector of a matrix.
- Analysis of convergence rate.

Final Three Classes:

- General iterative algorithms for optimization, specifically gradient descent and its variants.
- What are these methods, when are they applied, and how do you analyze their performance?
- Small taste of what you can find in COMPSCI 5900P or 6900P.

Discrete vs. Continuous Optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

- Graph Problems: min-cut, max flow, shortest path, matchings, maximum independent set, traveling salesman problem
- Problems with discrete constraints or outputs: bin-packing, scheduling, sequence alignment, submodular maximization
- Generally searching over a finite but exponentially large set of possible solutions Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

Unconstrained convex and non-convex optimization.
 Linear programming, quadratic programming, semidefinite programming

Continuous Optimization Examples

Mathematical Setup

Given some function $f : \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta_{\star}}$ with:

$$f(\vec{\theta}_{\star}) = \min_{\vec{\theta} \in R^d} f(\vec{\theta}) + \epsilon$$

Typically up to some small approximation factor.

Given some function $f : \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$\int f(\vec{\theta}_{\star}) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$$

Typically up to some small approximation factor.

Often under some constraints:

$$\begin{array}{c} \cdot \|\vec{\theta}\|_{2} \leq 1, \quad \|\vec{\theta}\|_{1} \leq 1. \\ \hline \cdot A\vec{\theta} \leq \vec{b}, \quad \vec{\theta}^{T}A\vec{\theta} \geq 0. \\ \hline \cdot \sum_{i=1}^{d} \vec{\theta}(i) \leq c. \\ \end{array}$$

Modern machine learning centers around continuous optimization. Typical Set Up: (supervised machine learning)

- Have a model, which is a function mapping inputs to predictions (neural network, linear function, low-degree polynomial etc).
- The model is parameterized by a parameter vector (weights in a neural network, coefficients in a linear function or polynomial)
- Want to train this model on input data, by picking a parameter vector such that the model does a good job mapping inputs to predictions on your training data.

This training step is typically formulated as a continuous optimization problem.

Example: Linear Regression

Example: Linear Regression for \mathcal{P} \mathcal{P}

Example: Linear Regression $\begin{array}{c} \underset{d}{\text{Hom}} & \underset{d}{\text{Hom}} & \underset{d}{\text{Hom}} & \underset{d}{\text{Supposed}} & \underset{d}{\text{Supposed}} & \underset{d}{\text{Supposed}} & \underset{d}{\text{Supposed}} & \underset{d}{\text{Supposed}} & \underset{d}{\text{Hom}} & \underset{d}$

Example: Linear Regression **Model:** $M_{\vec{\theta}} : \mathbb{R}^d \to \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$. **Parameter Vector:** $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Example: Linear Regression

Model: $M_{\vec{\theta}} : \mathbb{R}^d \to \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$. **Parameter Vector:** $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\underline{\vec{x}_1, \ldots, \vec{x}_n}$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels $\underline{y_1, \ldots, y_n} \in \mathbb{R}$, find $\underline{\vec{\theta}_*}$ minimizing the loss function:

$$\underline{L(\vec{\theta}, \mathbf{X}, \vec{y})} = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$

where ℓ is some measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i .

Example: Linear Regression

Model: $M_{\vec{\theta}} : \mathbb{R}^d \to \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$. **Parameter Vector:** $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\vec{x}_1, \ldots, \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels $y_1, \ldots, y_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$\underbrace{L(\vec{\theta}, \mathbf{X}, \vec{y})}_{i=1} = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$

where ℓ is some measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i .

- $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = (\underline{M}_{\vec{q}}(\vec{x}_i) y_i)^2$ (least squares regression)
- $y_i \in \{-1, 1\}$ and $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = \ln(1 + \exp(-y_i M_{\vec{\theta}}(\vec{x}_i)))$ (logistic regression)

Example: Linear Regression

Model: $M_{\vec{\theta}} : \mathbb{R}^d \to \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$. **Parameter Vector:** $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\vec{x}_1, \ldots, \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels $y_1, \ldots, y_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$\underbrace{L_{\mathbf{X},\mathbf{y}}(\vec{\theta})}_{i=1} = \underbrace{L(\vec{\theta},\mathbf{X},\vec{y})}_{i=1} = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i),y_i)$$

where ℓ is some measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i .

- $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = (M_{\vec{\theta}}(\vec{x}_i) y_i)^2$ (least squares regression)
- $y_i \in \{-1, 1\}$ and $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = \ln(1 + \exp(-y_i M_{\vec{\theta}}(\vec{x}_i)))$ (logistic regression)

$$\underbrace{L_{\mathbf{X},\vec{y}}(\vec{\theta})}_{i=1} = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$

- Supervised means we have labels y_1, \ldots, y_n for the training points.
- Solving the final optimization problem has many different names: likelibood maximization, empirical risk minimization, minimizing training loss, etc.
- Continuous optimization is also very common in unsupervised learning. (PCA, spectral clustering, etc.)

Generalization tries to explain why minimizing the loss $L_{X,\vec{y}}(\vec{\theta})$ on the training points minimizes the loss on future test points. L.e., makes us have good predictions on future inputs.

Optimization Algorithms

Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things: $(\chi_{y}(\vec{\Theta}))$

- The form of f (in ML, depends on the model & loss function).
- Any constraints on $\vec{\theta}$ (e.g., $\|\vec{\theta}\| < c$).
- <u>Computational constraints</u>, such as memory constraints. $L_{\mathbf{X},\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$

Optimization Algorithms

Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things:

- The form of f (in ML, depends on the model & loss function).
- Any constraints on $\vec{\theta}$ (e.g., $\|\vec{\theta}\| < c$).
- Computational constraints, such as memory constraints.

$$L_{\mathbf{X},\vec{\mathbf{y}}}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{\mathbf{x}}_i), y_i)$$

What are some popular optimization algorithms? New order Stoch a stic gradent descent BF65, L-BF65 online gradient descent Newton's methods adoptive gradent belovent (Adam, ndagrad)

10

Gradient Descent

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied to almost any continuous function we care about optimizing.
- Often not the 'best' choice for any given function, but it is the approach of choice in ML since it is simple, general, and often works very well.
- At each step, tries to move towards the lowest nearby point in the function that is can in the opposite direction of the gradient. $M_{1}D_{1}(9^{i-1})$

Let
$$\underline{\vec{e}_i} \in \mathbb{R}^d$$
 denote the i^{th} standard basis vector,
 $\vec{e}_i = \underbrace{[0, 0, 1, 0, 0, \dots, 0]}_{1 \text{ at position } i}.$

F:R-R Let $\vec{e}_i \in \mathbb{R}^d$ denote the *i*th standard basis vector, $\vec{e}_i = [0, 0, 1, 0, 0, \dots, 0].$ 1 at position *i* (O(1), O(2), .. O(1) + E, O(1+1) - -] Partial Derivative: $\frac{\partial f}{\partial \vec{\theta}(i)} = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \cdot \vec{e}_i) - f(\vec{\theta})}{\epsilon}.$ FHY $\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon) - f(x)}{\varepsilon}$

Let $\vec{e}_i \in \mathbb{R}^d$ denote the i^{th} standard basis vector, $\vec{e}_i = \underbrace{[0, 0, 1, 0, 0, \dots, 0]}_{1 \text{ at position } i}.$

Partial Derivative:

Multivariate Calculus Review

$$f: \mathbb{R}^d \rightarrow \mathbb{R} \quad \forall f(\overline{b}) \in \mathbb{R}^d$$

Gradient: Just a 'list' of the partial derivatives.

$$\vec{\nabla}f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}$$

Multivariate Calculus Review

Gradient: Just a 'list' of the partial derivatives.

(OG & Note

$$X^{2} + 3X +)$$

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.

Gradient Evaluation: Can compute $\nabla f(\vec{\theta})$ for any $\vec{\theta}$.

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $\underline{f}(\vec{\theta})$ for any $\vec{\theta}$.

Gradient Evaluation: Can compute $\vec{\nabla} f(\vec{\theta})$ for any $\vec{\theta}$.

In neural networks:

- Function evaluation is called a forward pass (propogate an input through the network).
- Gradient evaluation is called a backward pass (compute the gradient via chain rule, using backpropagation).

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon}$$

$$D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}$$

$$D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}$$

So for small η :

$$\underbrace{f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)})}_{\substack{ \leftarrow \sim \sim \sim \\ \mathbf{e} \\ \mathbf{e} }} = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)})$$

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v})$.

$$D_{\vec{v}}f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}$$

So for small η :

$$f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot D_{\vec{v}} f(\vec{\theta}^{(i-1)})$$

$$(\vec{v}, \vec{v}, \vec$$

$$D_{\vec{v}}f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}$$

So for small η :

$$f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot D_{\vec{v}} f(\vec{\theta}^{(i-1)})$$
$$= \eta \cdot \langle \vec{v}, \vec{\nabla} f(\vec{\theta}^{(i-1)}) \rangle.$$

$$D_{\vec{v}}f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}$$

So for small η :

$$f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot D_{\vec{v}} f(\vec{\theta}^{(i-1)})$$
$$= \eta \cdot (\vec{v}, \vec{\nabla} f(\vec{\theta}^{(i-1)})).$$

We want to choose \vec{v} minimizing $\langle \vec{v}, \nabla f(\vec{\theta}^{(i-1)}) \rangle$ – i.e., pointing in the direction of $\nabla f(\vec{\theta}^{(i-1)})$ but with the opposite sign.

Gradient Descent Psuedocode

Gradient Descent

- Choose some initialization $\vec{\theta}^{(0)}$.
- For i = 1, ..., t

$$\underline{\cdot \vec{\theta}^{(i)}} = \underline{\vec{\theta}^{(i-1)}} - \eta \nabla f(\vec{\theta}^{(i-1)})$$

• Return $\vec{\theta}^{(t)}$, as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)

Gradient Descent Psuedocode

Gradient Descent

• Choose some initialization $\vec{\theta}^{(0)}$.

$$\cdot \text{ For } i = 1, \dots, t \\ \cdot \vec{\theta^{(i)}} = \vec{\theta^{(i-1)}} - \eta \nabla f(\vec{\theta^{(i-1)}})$$

• Return $\vec{\theta}^{(t)}$, as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)

• For now assume η stays the same in each iteration.

When Does Gradient Descent Work?

Gradient Descent Update: $\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$