COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 2

Reminder

Reminders:

- Sign up for Piazza.
- Find homework teammates (see Piazza Post) and sign up for Gradescope (code on course website).
- First quiz due mon Bpm

Overview

Last Class:

- Basic probability review. See course site for links to resources to refresh your probability background.
- Linearity of expectation: $\mathbb{E}[\mathrm{X}+\mathrm{Y}]=\mathbb{E}[\mathrm{X}]+\mathbb{E}[\mathrm{Y}]$ always.

Overview

Last Class:

- Basic probability review. See course site for links to resources to refresh your probability background.
- Linearity of expectati申n: $\mathbb{E}[\mathrm{X}+\mathrm{Y}]=\mathbb{E}[\mathrm{X}]+\mathbb{E}[\mathrm{Y}]$ always.

Today:

- Linearity of variance: when does $\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$?
- Algorithmic applications of linearity of expectation and variance.
- Introduce Markov's inequality a fundamental concentration bound that let us prove that a random variable lies close to its expectation with good probability.
- Learn about random hash functions, which are a key tool in randomized methods for data processing. Probabilistic analysis via linearity of expectation.

Linearity of Variance

$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$

Linearity of Variance
$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$ when X and Y are independent.

$$
X=Y
$$

uncorrelated

$$
\begin{aligned}
\operatorname{Var}(x+y) & =\operatorname{Var}(2 x) \\
& =y \cdot \operatorname{Var}(x) \neq \operatorname{Var}(x)+\operatorname{Var}(y)
\end{aligned}
$$

Linearity of Variance

$$
\begin{gathered}
\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}] \text { when } \mathrm{X} \text { and } \mathrm{Y} \text { are independent. } \\
\text { Claim 1: (exercise) } \operatorname{Var}[\mathrm{X}]=\mathbb{E}\left[\mathrm{X}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2} \\
\operatorname{Var}(\mathrm{X})=\mathbb{E}\left((X-\mathbb{E} X)^{2}\right)
\end{gathered}
$$

Linearity of Variance

$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$ when X and Y are independent.
Claim 1: (exercise) $\operatorname{Var}[\mathrm{X}]=\mathbb{E}\left[\mathrm{X}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}$ (via linearity of expectation)

Linearity of Variance

$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$ when X and Y are independent.
Claim 1: (exercise) $\operatorname{Var}[\mathrm{X}]=\mathbb{E}\left[\mathrm{X}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}$ (via linearity of expectation),$\sum_{t} s \cdot t \cdot P_{f}(X=3$ and $Y: t)$
Claim 2: (exercise) $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$ (i.e., X and Y are uncorrelated) when X, Y are independent.

Linearity of Variance

$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$ when X and Y are independent.
Claim 1: (exercise) $\operatorname{Var}[\mathrm{X}]=\mathbb{E}\left[\mathrm{X}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}$ (via linearity of expectation)

Claim 2: (exercise) $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$ (ie., X and Y are uncorrelated) when X, Y are independent.

Together give:

Linearity of Variance
$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$ when X and Y are independent.
Claim 1: (exercise) $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$ (via linearity of
expectation)
Claim 2: (exercise) $\mathbb{E}[\mathrm{XY}]=\mathbb{E}[\mathrm{X}] \cdot \mathbb{E}[\mathrm{Y}]$ (ie., X and Y are uncorrelated) when X, Y are independent.

Together give:

$$
\begin{aligned}
&\operatorname{Var}[X+Y]=\underbrace{\mathbb{E}\left[(X+Y)^{2}\right]}-\underbrace{\mathbb{E}[X+Y]^{2}}_{(\mathbb{E} X+\mathbb{E} Y)^{2}}=(\mathbb{E X})^{2}+2 \mathbb{E X} \mathbb{E} Y+\mathbb{E} Y)^{2} \\
& \mathbb{E}\left[X^{2}+2 X Y+Y^{2}\right] \\
& \mathbb{E}\left[X^{2}\right]+\mathbb{E}[2 X Y]+\mathbb{E}\left[Y^{2}\right]
\end{aligned}
$$

Linearity of Variance

$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$ when X and Y are independent.
Claim 1: (exercise) $\operatorname{Var}[\mathrm{X}]=\mathbb{E}\left[\mathrm{X}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}$ (via linearity of expectation)

Claim 2: (exercise) $\mathbb{E}[\mathrm{XY}]=\mathbb{E}[\mathrm{X}] \cdot \mathbb{E}[\mathrm{Y}]$ (i.e., X and Y are uncorrelated) when X, Y are independent.

Together give:

$$
\begin{aligned}
\operatorname{Var}[\mathrm{X}+\mathrm{Y}] & =\mathbb{E}\left[(\mathrm{X}+\mathrm{Y})^{2}\right]-\mathbb{E}[\mathrm{X}+\mathrm{Y}]^{2} \\
& =\underbrace{\mathbb{E}\left[\mathrm{X}^{2}\right]}+2 \mathbb{E}[\mathrm{XY}]+\mathbb{E}\left[\mathrm{Y}^{2}\right]
\end{aligned}-\frac{(\mathbb{E}[\mathrm{X}]+\mathbb{E}[\mathrm{Y}])^{2}}{(\text { linearity of expectation })}
$$

Linearity of Variance

$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$ when X and Y are independent.
Claim 1: (exercise) $\operatorname{Var}[\mathrm{X}]=\mathbb{E}\left[\mathrm{X}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}$ (via linearity of expectation)

Claim 2: (exercise) $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$ (ie., X and Y are uncorrelated) when X, Y are independent.

Together give:

$$
\begin{aligned}
\operatorname{Var}[\mathrm{X}+\mathrm{Y}]= & \mathbb{E}\left[(\mathrm{X}+\mathrm{Y})^{2}\right]-\mathbb{E}[\mathrm{X}+\mathrm{Y}]^{2} \\
= & \mathbb{E}\left[\mathrm{X}^{2}\right]+2 \mathbb{E}[\mathrm{XY}]+\mathbb{E}\left[\mathrm{Y}^{2}\right]-(\mathbb{E}[\mathrm{X}]+\mathbb{E}[\mathrm{Y}])^{2} \\
& \quad \text { (linearity of expectation) } \\
= & \mathbb{E}\left[\mathrm{X}^{2}\right]+2 \mathbb{E}[\mathrm{XY}]+\mathbb{E}\left[\mathrm{Y}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}-2 \mathbb{E}[\mathrm{X}] \cdot \mathbb{E}[\mathrm{Y}]-\mathbb{E}[\mathrm{Y}]^{2}
\end{aligned}
$$

Linearity of Variance

$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$ when X and Y are independent.
Claim 1: (exercise) $\operatorname{Var}[\mathrm{X}]=\mathbb{E}\left[\mathrm{X}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}$ (via linearity of expectation)
Claim 2: (exercise) $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$ (i.e., X and Y are uncorrelated) when X, Y are independent.

Together give:

$$
\begin{aligned}
& \operatorname{Var}[X+Y]=\mathbb{E}\left[(X+Y)^{2}\right]-\mathbb{E}[X+Y]^{2} \\
& =\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-(\mathbb{E}[X]+\mathbb{E}[Y])^{2} \\
& \text { (linearity of expectation) } \\
& \left.=\mathbb{E}\left[X^{2}\right]+2 \mathbb{E} X^{2} Y\right]+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[X]^{2}-2 \mathbb{E}[Y] \cdot \mathbb{E}[Y]-\mathbb{E}[Y]^{2} \\
& \frac{\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2}}{\operatorname{wn}(x)}+\underset{(\operatorname{Er}}{\mathbb{E}}\left[Y^{2}\right]-\mathbb{N}(x) \mathrm{E}[Y]^{2}
\end{aligned}
$$

Linearity of Variance

$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$ when X and Y are independent.
Claim 1: (exercise) $\operatorname{Var}[\mathrm{X}]=\mathbb{E}\left[\mathrm{X}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}$ (via linearity of expectation)

Claim 2: (exercise) $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$ (ie., X and Y are uncorrelated) when X, Y are independent.

Together give:

$$
\begin{aligned}
\operatorname{Var}[\mathrm{X}+\mathrm{Y}]= & \mathbb{E}\left[(\mathrm{X}+\mathrm{Y})^{2}\right]-\mathbb{E}[\mathrm{X}+\mathrm{Y}]^{2} \\
& =\mathbb{E}\left[\mathrm{X}^{2}\right]+2 \mathbb{E}[\mathrm{XY}]+\mathbb{E}\left[\mathrm{Y}^{2}\right]-(\mathbb{E}[\mathrm{X}]+\mathbb{E}[\mathrm{Y}])^{2} \\
\quad & \quad \text { (linearity of expectation) } \\
& =\mathbb{E}\left[\mathrm{X}^{2}\right]+2 \mathbb{E}[\mathrm{XY}]+\mathbb{E}\left[\mathrm{Y}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}-2 \mathbb{E}[\mathrm{X}] \cdot \mathbb{E}[\mathrm{Y}]-\mathbb{E}[\mathrm{Y}]^{2} \\
& =\mathbb{E}\left[\mathrm{X}^{2}\right]+\mathbb{E}\left[\mathrm{Y}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}-\mathbb{E}[\mathrm{Y}]^{2}
\end{aligned}
$$

Linearity of Variance

$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$ when X and $\underline{\mathrm{Y}}$ are independent.
Claim 1: (exercise) $\operatorname{Var}[\mathrm{X}]=\mathbb{E}\left[\mathrm{X}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}$ (via linearity of
 uncorrelated) when X, Y are independent.

Together give:

$$
\begin{aligned}
\operatorname{Var}[\mathrm{X}+\mathrm{Y}] & =\mathbb{E}\left[(\mathrm{X}+\mathrm{Y})^{2}\right]-\mathbb{E}[\mathrm{X}+\mathrm{Y}]^{2} \\
& =\mathbb{E}\left[\mathrm{X}^{2}\right]+2 \mathbb{E}[\mathrm{XY}]+\mathbb{E}\left[\mathrm{Y}^{2}\right]-(\mathbb{E}[\mathrm{X}]+\mathbb{E}[\mathrm{Y}])^{2} \\
& \quad(\text { linearity of expectation }) \\
& =\mathbb{E}\left[\mathrm{X}^{2}\right]+2 \mathbb{E}[\mathrm{XY}]+\mathbb{E}\left[\mathrm{Y}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}-2 \mathbb{E}[\mathrm{X}] \cdot \mathbb{E}[\mathrm{Y}]-\mathbb{E}[\mathrm{Y}]^{2} \\
& =\mathbb{E}\left[\mathrm{X}^{2}\right]+\mathbb{E}\left[\mathrm{Y}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}-\mathbb{E}[\mathrm{Y}]^{2} \\
& =\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}] .
\end{aligned}
$$

An Algorithmic Application

You have contracted with a new company to provide CAPTCHAS for your website.

An Algorithmic Application

You have contracted with a new company to provide CAPTCHAS for your website.

$$
\text { captcha } 246
$$

Type the word above:
$ゃ$

GO

- They claim that they have a database of $1,000,000$ unique CAPTCHAS. A random one is chosen for each security check. - You want to independently verify this claimed database size.

An Algorithmic Application

You have contracted with a new company to provide CAPTCHAS for your website.

$$
\text { captcha } 246
$$

Type the word above:

$ゃ$

GO

- They claim that they have a database of $1,000,000$ unique CAPTCHAS. A random one is chosen for each security check.
- You want to independently verify this claimed database size.
- You could make test checks until you see $1,000,000$ unique CAPTCHAS: would take $\geq 1,000,000$ checks!

An Algorithmic Application

An Idea: You run some test security checks and see if any duplicate CAPTCHAS show up. If you're seeing duplicates after not too many checks, the database size is probably not too big.

An Algorithmic Application

An Idea: You run some test security checks and see if any duplicate CAPTCHAS show up. If you're seeing duplicates after not too many checks, the database size is probably not too big.

'Mark and recapture' method in ecology.

An Algorithmic Application

An Idea: You run some test security checks and see if any duplicate CAPTCHAS show up. If you're seeing duplicates after not too many checks, the database size is probably not too bis. $\operatorname{pr}(k$ duplcutes $): \frac{k}{\binom{m}{2}}$

Think-Pair-Share: If you run m security checks, and there are n unique CAPTCHAS, how many pairwise duplicates do you see in expectation?

If e.g. the same CAPTCHA shows up three times, on your $i^{\text {th }}, j^{\text {th }}$, and $k^{\text {th }}$ test, this is three duplicates: $(i, j),(i, k)$ and (j, k).

Linearity of Expectation

Let $\mathbf{D}_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable.
n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

Linearity of Expectation

Let $\mathrm{D}_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable.

n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

Linearity of Expectation

Let $D_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable. The number of pairwise duplicates (a random variable) is:

$$
\underline{\underline{\mathrm{D}}=} \sum_{i, j \in[m], i<j} \mathrm{D}_{i, j} .
$$

n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

Linearity of Expectation

Let $\underline{\mathrm{D}_{i, j}=1}$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable. The number of pairwise duplicates (a random variable) is:

$$
\mathbb{E}[\mathrm{D}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathrm{D}_{i, j}\right] .
$$

n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

Linearity of Expectation

Let $D_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable. The number of pairwise duplicates (a random variable) is:

$$
\mathbb{E}[\mathrm{D}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathrm{D}_{i, j}\right] .
$$

For any pair $i, j \in[m], i<j: \quad \underline{\mathbb{E}\left[D_{i, j}\right]}=\underline{\operatorname{Pr}\left[\mathrm{D}_{i, j}=1\right]}=\underline{\frac{1}{n}}$.
n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

Linearity of Expectation

Let $D_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable. The number of pairwise duplicates (a random variable) is:

$$
\mathbb{E}[\mathrm{D}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathrm{D}_{\mathrm{D}, j}\right] .
$$

For any pair $i, j \in[m], i<j: \quad \mathbb{E}\left[\mathrm{D}_{i, j}\right]=\operatorname{Pr}\left[\mathrm{D}_{i, j}=1\right]=\frac{1}{n}$.

n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

Linearity of Expectation

Let $\mathrm{D}_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable. The number of pairwise duplicates (a random variable) is:

$$
\operatorname{Pr}(D,-,-1) \quad \mathbb{E}[\mathrm{D}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathrm{D}_{i, j}\right] .
$$

$$
\left\{\begin{array}{l}
\left\{D_{12}=1\right. \\
\left\{D_{23}=1\right.
\end{array}\right.
$$

For any pair $, j \in[m], i<j: \quad \mathbb{E}\left[D_{i, j}\right]=\operatorname{Pr}\left[D_{i, j}=1\right]=\frac{1}{n} .\left\{D_{13^{j}} \mid\right.$

$$
\mathbb{E}[\mathbf{D}]=\sum_{i, j \in[m], i<j} \frac{1}{n}=\frac{\binom{m}{2}}{n}=\frac{m(m-1)}{2 n} .
$$

Note that the $\mathrm{D}_{i, j}$ random variables are not independent!
n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

Connection to the Birthday Paradox

If there are a 130 people in this room, each whose birthday we assume to be a uniformly random day of the 365 days in the year, how many pairwise duplicate birthdays do we expect there are?

Connection to the Birthday Paradox

If there are a 130 people in this room, each whose birthday we assume to be a uniformly random day of the 365 days in the year, how many pairwise duplicate birthdays do we expect there are?

$$
\mathbb{E}[D]=\frac{m\left(\frac{m-1)}{2 n}\right.}{2 \underline{n}}=\frac{130 \cdot 129}{2 \cdot 365} \approx 23 .
$$

Linearity of Expectation

You take $m=1000$ samples. If the database size is as claimed ($n=1,000,000$) then expected number of duplicates is:

$$
\mathbb{E}[\mathrm{D}]=\frac{m(m-1)}{2 n}=.4995
$$

n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS.

Linearity of Expectation

You take $m=1000$ samples. If the database size is as claimed ($n=1,000,000$) then expected number of duplicates is:

$$
\mathbb{E}[\mathrm{D}]=\frac{m(m-1)}{2 n}=.4995
$$

You see 10 pairwise duplicates and suspect that something is up. But how confident can you be in your test?
n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS.

Linearity of Expectation

You take $m=1000$ samples. If the database size is as claimed ($n=1,000,000$) then expected number of duplicates is:

$$
\mathbb{E}[\mathrm{D}]=\frac{m(m-1)}{2 n}=.4995
$$

You see 10 paise duplicates and suspect that something is up. But how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a random variable deviates a certain distance from its mean.
n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS.

Linearity of Expectation

You take $m=1000$ samples. If the database size is as claimed ($n=1,000,000$) then expected number of duplicates is:

$$
\mathbb{E}[D]=\frac{m(m-1)}{2 n}=.4995
$$

You see 10 pairwise duplicates and suspect that something is up. But how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a random variable deviates a certain distance from its mean.

- Useful in understanding how statistical tests perform, the behavior of randomized algorithms, the behavior of data drawn from different distributions, etc.
n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS.

Markov's Inequality

The most fundamental concentration bound: Markov's inequality.

Markov's Inequality

The most fundamental concentration bound: Markov's inequality.
For any non-negative random variable X and any $t>0$:

$$
\operatorname{Pr}[\mathrm{X} \geq t] \leq \frac{\mathbb{E}[\mathrm{X}]}{\underline{t}} . \quad \frac{.1}{100}
$$

Markov's Inequality

The most fundamental concentration bound: Markov's inequality.
For any non-negative random variable X and any $t>0$:

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

Proof:

Markov's Inequality

The most fundamental concentration bound: Markov's inequality.
For any non-negative random variable X and any $t>0$:

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

Proof:

$$
\mathbb{E}[X]=\sum_{s} \operatorname{Pr}(X=s) \cdot s
$$

Markov's Inequality

The most fundamental concentration bound: Markov's inequality.
For any non-negative random variable X and any $t>0$:

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

Proof:

$$
\mathbb{E}[X]=\underline{\sum_{s} \operatorname{Pr}(X=s) \cdot s \geq \sum_{s \geq t} \operatorname{Pr}(X=s) \cdot s}
$$

Markov's Inequality

The most fundamental concentration bound: Markov's inequality.
For any non-negative random variable X and any $t>0$:

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[X]=\sum_{s} \operatorname{Pr}(X=s) \cdot s & \geq \sum_{s \geq t} \underbrace{\frac{\operatorname{Pr}(X=s)}{\sum_{s \geq t}} \operatorname{Pr}(X=s) \cdot t} \\
& \underbrace{\operatorname{Pr}(X \geq,+)}
\end{aligned}
$$

Markov's Inequality
The most fundamental concentration bound: Markov's inequality.
For any nonnegative random variable X and any $t>0$: x约。

$$
\begin{aligned}
& \xlongequal{\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}} . \quad t=Y \\
& \xlongequal{\operatorname{Pr}[x \geq t] \leq \frac{\mathbb{E}[x]}{t}} . \quad \quad t=Y \\
& \sum_{i=\frac{1}{6}+\frac{2}{6}+\frac{3}{6} \ldots \quad r^{\frac{4}{6}}+\frac{5}{6}+\frac{6}{6}} \\
& \mathbb{E}[X]=\sum_{s} \operatorname{Pr}(X=s) \cdot s \geq \sum_{s>t} \operatorname{Pr}(X=s) \cdot s \\
& \geq \sum_{s \geq t} \operatorname{Pr}(X=s) \cdot t \quad \frac{4}{6}+\frac{4}{6}+\frac{4}{6} \\
& =t \cdot \operatorname{Pr}(X \geq t) \text {. } \\
& \frac{1}{2} \cdot 4
\end{aligned}
$$

Proof:

Markov's Inequality

The most fundamental concentration bound: Markov's inequality.
For any non-negative random variable X and any $t>0$:

$$
\begin{aligned}
\operatorname{Pr}[X & \geq t] \leq \frac{\mathbb{E}[X]}{t} . \\
& f \cdot \mathbb{E}[x]
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& \begin{aligned}
\mathbb{E}[X]=\sum_{s} \operatorname{Pr}(X=s) \cdot s & \geq \sum_{s \geq t} \operatorname{Pr}(X=s) \cdot s \\
& \geq \sum_{s \geq t} \operatorname{Pr}(X=s) \cdot t \\
& =t \cdot \operatorname{Pr}(X \geq t) .
\end{aligned} \\
& \text { Useful form: }\left[\begin{array}{l}
\operatorname{Pr}[X \geq t \cdot \mathbb{E}[X]] \leq \frac{1}{t} .
\end{array}\right.
\end{aligned}
$$

Markov's Inequality

The most fundamental concentration bound: Markov's inequality.
For any non-negative random variable X and any $t>0$:

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[X]=\sum_{s} \operatorname{Pr}(X=s) \cdot s & \geq \sum_{s \geq t} \operatorname{Pr}(X=s) \cdot s \\
& \geq \sum_{s \geq t} \operatorname{Pr}(X=s) \cdot t \\
& =t \cdot \operatorname{Pr}(X \geq t) .
\end{aligned}
$$

Useful form: $\operatorname{Pr}[X \geq t \cdot \mathbb{E}[X]] \leq \frac{1}{t}$.
The larger the deviation t, the smaller the probability.

Back to Our Application

Expected number of duplicate CAPTCHAS:
1000 tests
$\mathbb{E}[\mathrm{D}]=\frac{m(m-1)}{2 n}=.4995$.
You see $\mathbf{D}=10$ duplicates.

n : number of CAPTCHAS in database ($n=1,000,000$ claimed), m : number of random CAPTCHAS drawn to check database size ($m=1000$ in this example), D: number of pairwise duplicates in m random CAPTCHAS.

Back to Our Application

Expected number of duplicate CAPTCHAS:
$\mathbb{E}[\mathrm{D}]=\frac{m(m-1)}{2 n}=.4995$.
You see $\mathbf{D}=10$ duplicates.
Applying Markov's inequality, if the real database size is
$n=1,000,000$ the probability of this happening is:

$$
\underline{\operatorname{Pr}[D \geq 10]} \leq \frac{\mathbb{E}[\mathrm{D}]}{10}=\frac{.4995}{10} \approx .05
$$

n : number of CAPTCHAS in database ($n=1,000,000$ claimed), m : number of random CAPTCHAS drawn to check database size ($m=1000$ in this example), D: number of pairwise duplicates in m random CAPTCHAS.

Back to Our Application

Expected number of duplicate CAPTCHAS:
$\mathbb{E}[\mathrm{D}]=\frac{m(m-1)}{2 n}=.4995$.
You see $\mathbf{D}=10$ duplicates.
Applying Markov's inequality, if the real database size is
$n=1,000,000$ the probability of this happening is:

$$
\operatorname{Pr}[D \geq 10] \leq \frac{\mathbb{E}[D]}{10}=\frac{.4995}{10} \approx .05
$$

This is pretty small - you feel pretty sure the number of unique
CAPTCHAS is much less than $1,000,000$. But how can you boost your confidence?
n : number of CAPTCHAS in database ($n=1,000,000$ claimed), m : number of random CAPTCHAS drawn to check database size ($m=1000$ in this example),
D: number of pairwise duplicates in m random CAPTCHAS.

Back to Our Application

Expected number of duplicate CAPTCHAS:
$\mathbb{E}[\mathrm{D}]=\frac{m(m-1)}{2 n}=.4995$.
You see $\mathbf{D}=10$ duplicates.
Applying Markov's inequality, if the real database size is $n=1,000,000$ the probability of this happening is:

$$
\operatorname{Pr}[D \geq 10] \leq \frac{\mathbb{E}[D]}{10}=\frac{.4995}{10} \approx .05
$$

This is pretty small - you feel pretty sure the number of unique
CAPTCHAS is much less than $1,000,000$. But how can you boost your confidence? We'll discuss in the next few classes.
n : number of CAPTCHAS in database ($n=1,000,000$ claimed), m : number of random CAPTCHAS drawn to check database size ($m=1000$ in this example),
D: number of pairwise duplicates in m random CAPTCHAS.

Hash Tables

Want to store a set of items from some finite but massive universe U of items (e.g., images of a certain size, text documents, 128-bit IP addresses).

Hash Tables

Want to store a set of items from some finite but massive universe U of items (e.g., images of a certain size, text documents, 128-bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.

$$
\left.\begin{array}{l}
\text { dict } \\
h=s h
\end{array}\right\}
$$

Hash Tables

Want to store a set of items from some finite but massive universe U of items (e.g., images of a certain size, text documents, 128-bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.
Classic Solution:

Hash Tables

Want to store a set of items from some finite but massive universe U of items (e.g., images of a certain size, text documents, 128-bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.
Classic Solution: Hash tables

Hash Tables

Want to store a set of items from some finite but massive universe U of items (e.g., images of a certain size, text documents, 128-bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.
Classic Solution: Hash tables

- Static hashing since we won't worry about insertion and deletion today.

Hash Tables

- hash function $h: U \rightarrow[n]$ maps elements from the universe to indices $1, \cdots, n$ of an array.

Hash Tables

- hash function $h: U \rightarrow[n]$ maps elements from the universe to indices $1, \cdots, n$ of an array.
- Typically $|U| \gg n$. Many elements map to the same index.

Hash Tables

- hash function $h: U \rightarrow[n]$ maps elements from the universe to indices $1, \cdots, n$ of an array.
- Typically $|U| \gg n$. Many elements map to the same index.
- Collisions: when we insert m items into the hash table we may have to store multiple items in the same location (typically as a linked list).

Collisions

Query runtime: $O(c)$ when the maximum number of collisions in a table entry is c (i.e., must traverse a linked list of size c).

c collisions

Collisions

Query runtime: $O(c)$ when the maximum number of collisions in a table entry is c (i.e., must traverse a linked list of size c).

c collisions

How Can We Bound c?

Collisions

Query runtime: $O(c)$ when the maximum number of collisions in a table entry is c (i.e., must traverse a linked list of size c).

c collisions

How Can We Bound c ?

- In the worst case could have $c=m$ (all items hash to the same location).

Collisions

Query runtime: $O(c)$ when the maximum number of collisions in a table entry is c (i.e., must traverse a linked list of size c).

c collisions

How Can We Bound c ?

- In the worst case could have $c=m$ (all items hash to the same location).
- Two approaches: 1) we assume the items inserted are chosen randomly from the universe U or 2) we assume the hash function is random.

Random Hash Function

Let $\mathrm{h}: \mathrm{U} \rightarrow[\mathrm{n}]$ be a fully random hash function.

- I.e., for $x \in U, \operatorname{Pr}(\mathrm{~h}(x)=i)=\frac{1}{n}$ for all $i=1, \ldots, n$ and $\mathrm{h}(x), \mathrm{h}(y)$ are independent for any two items $x \neq y$.

$$
h(x)=h(x)
$$

Random Hash Function

Let $\mathrm{h}: U \rightarrow[n]$ be a fully random hash function.

- I.e., for $x \in U, \operatorname{Pr}(\mathrm{~h}(x)=i)=\frac{1}{n}$ for all $i=1, \ldots, n$ and $h(x), \mathrm{h}(y)$ are independent for any two items $x \neq y$.

Caveat 1: It is very expensive to represent and compute such a random function. We will later see how a hash function computable in $O(1)$ time function can be used instead.

- Caveat 2: In practice, often suffices to use hash functions like MD5, SHA-2, etc. that 'look random enough'.

Random Hash Function

Let $\mathrm{h}: \mathrm{U} \rightarrow[\mathrm{n}]$ be a fully random hash function.

- I.e., for $x \in U, \operatorname{Pr}(\mathrm{~h}(x)=i)=\frac{1}{n}$ for all $i=1, \ldots, n$ and $h(x), h(y)$ are independent for any two items $x \neq y$.
- Caveat 1: It is very expensive to represent and compute such a random function. We will later see how a hash function computable in $O(1)$ time function can be used instead.
- Caveat 2: In practice, often suffices to use hash functions like MD5, SHA-2, etc. that 'look random enough'.

Think-Pair-Share: Assuming we insert m elements into a hash table of size n using a fully random hash function, what is the expected total number of pairwise collisions?

