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Logistics

• Problem Set 3 is due Monday at 11:59pm.
• No quiz due.

2



Summary

Last Class: Applications of Low-Rank Approximation

• Matrix completion

• Entity Embeddings.

• Non-linear dimensionality reduction via low-rank
approximation of near-neighbor graphs

This Class: Spectral Graph Theory and Spectral Clustering

• Start on graph clustering for community detection and
non-linear clustering.

• Spectral clustering: finding good cuts via Laplacian eigenvectors.

• Start on stochastic block model: A simple clustered graph
model where we can prove the effectiveness of spectral
clustering.
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Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Community detection in naturally occurring networks.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.
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Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let v⃗ ∈ Rn be a cut indicator: v⃗(i) = 1 if i ∈ S. v⃗(i) = −1 if i ∈ T.
Want v⃗ to have roughly equal numbers of 1s and −1s. I.e.,
v⃗T⃗1 ≈ 0. 5



The Laplacian View

For a graph with adjacency matrix A and degree matrix D, L = D− A is
the graph Laplacian.

For any vector v⃗, its ‘smoothness’ over the graph is given by:∑
(i,j)∈E

(⃗v(i)− v⃗(j))2 = v⃗TL⃗v.
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The Laplacian View

For a cut indicator vector v⃗ ∈ {−1, 1}n with v⃗(i) = −1 for i ∈ S
and v⃗(i) = 1 for i ∈ T:

1. v⃗TLV⃗ =
∑

(i,j)∈E(⃗v(i)− v⃗(j))2 = 4 · cut(S, T).
2. v⃗T⃗1 = |V| − |S|.

Want to minimize both v⃗TL⃗v (cut size) and v⃗T⃗1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.
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Smallest Laplacian Eigenvector

The smallest eigenvector of the Laplacian is:

v⃗n =
1√
n
· 1⃗ = argmin

v∈Rn with ∥⃗v∥=1
v⃗TL⃗v

with eigenvalue λn(L) = v⃗TnL⃗vn = 0. Why?

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A− D.
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Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

v⃗n−1 = argmin
v∈Rn with ∥⃗v∥=1, v⃗Tnv⃗=0

v⃗TL⃗v.

If v⃗n−1 were in
{
− 1√

n ,
1√
n

}n
it would have:

• v⃗Tn−1L⃗vn−1 =
4√
n · cut(S, T) as small as possible given that

v⃗Tn−1⃗vn = 1√
n v⃗

T
n−11⃗ =

|T|−|S|
n = 0.

• I.e., v⃗n−1 would indicate the smallest perfectly balanced
cut.

• The eigenvector v⃗n−1 ∈ Rn is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A − D. S, T: vertex sets on
different sides of cut.
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Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

v⃗n−1 = argmin
v∈Rdwith ∥⃗v∥=1, v⃗T⃗1=0

v⃗TLV⃗.

Set S to be all nodes with v⃗n−1(i) < 0, T to be all with v⃗2(i) ≥ 0.
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Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

• Compute smallest k nonzero eigenvectors v⃗n−1, . . . , v⃗n−k of L.
• Represent each node by its corresponding row in V ∈ Rn×k

whose columns are v⃗n−1, . . . v⃗n−k.

• Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A− D.
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Laplacian Embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

v⃗TL⃗v =
∑
(i,j)∈E

[⃗v(i)− v⃗(j)]2.

Embedding points with coordinates given by
[⃗vn−1(j), v⃗n−2(j), . . . , v⃗n−k(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.

• Spectral Clustering

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Node2Vec, DeepWalk, etc.
(variants on Laplacian) 12



Laplacian Embedding

Original Data: (not linearly separable)

k-Nearest
Neighbors Graph:

Embedding with
eigenvectors v⃗n−1, v⃗n−2: (linearly separable)
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Generative Models

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.

Common Approach: Give a natural generative model for
random inputs and analyze how the algorithm performs on
inputs drawn from this model.

• Very common in algorithm design for data
analysis/machine learning (can be used to justify least
squares regression, k-means clustering, PCA, etc.)
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Stochastic Block Model

Stochastic Block Model (Planted Partition Model): Let Gn(p,q) be a
distribution over graphs on n nodes, split randomly into two groups
B and C, each with n/2 nodes.

• Any two nodes in the same group are connected with
probability p (including self-loops).

• Any two nodes in different groups are connected with prob.
q < p.

• Connections are independent.
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Linear Algebraic View

Let G be a stochastic block model graph drawn from Gn(p,q).

• Let A ∈ Rn×n be the adjacency matrix of G, ordered in terms of
group ID.

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability q between nodes not in the same group.
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Expected Adjacency Matrix

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix. What is E[A]?

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability q between nodes not in the same group.
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Expected Adjacency Spectrum

Letting G be a stochastic block model graph drawn from Gn(p,q) and
A ∈ Rn×n be its adjacency matrix. (E[A])i,j = p for i, j in same group,
(E[A])i,j = q otherwise.

What is rank(E[A])? What
are the eigenvectors and
eigenvalues of E[A]?

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability q between nodes not in the same group.
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Expected Adjacency Spectrum

Letting G be a stochastic block model graph drawn from Gn(p,q) and
A ∈ Rn×n be its adjacency matrix, what are the eigenvectors and
eigenvalues of E[A]?
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Expected Adjacency Spectrum

If we compute v⃗2 then we recover the communities B and C!

• Can show that for G ∼ Gn(p,q), A is close to E[A] with high
probability (matrix concentration inequality).

• Thus, the true second eigenvector of A is close to
[1, 1, 1, . . . ,−1,−1,−1] and gives a good estimate of the
communities.
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