COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 19

Logistics

- Problem Set 3 is due Monday at 11:59pm.
- No quiz due.

Summary

Last Class: Applications of Low-Rank Approximation

- Matrix completion
- Entity Embeddings.
- Non-linear dimensionality reduction via low-rank approximation of near-neighbor graphs

This Class: Spectral Graph Theory and Spectral Clustering

- Start on graph clustering for community detection and non-linear clustering.
- Spectral clustering: finding good cuts via Laplacian eigenvectors.
- Start on stochastic block model: A simple clustered graph model where we can prove the effectiveness of spectral clustering.

Spectral Clustering

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Community detection in naturally occurring networks.

(a) Zachary Karate Club Graph

Non-linearly separable data.

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

(a) Zachary Karate Club Graph

(a) Zachary Karate Club Graph

Small cuts are often not informative.
Solution: Encourage cuts that separate large sections of the graph.

- Let $\vec{v} \in \mathbb{R}^{n}$ be a cut indicator: $\vec{v}(i)=1$ if $i \in S . \vec{v}(i)=-1$ if $i \in T$. Want \vec{v} to have roughly equal numbers of $1 s$ and -1 s. I.e., $\vec{v}^{\top} \vec{\gamma} \approx 0$.

The Laplacian View

For a graph with adjacency matrix A and degree matrix $\mathrm{D}, \mathrm{L}=\mathrm{D}-\mathrm{A}$ is the graph Laplacian.

For any vector \vec{v}, its 'smoothness' over the graph is given by:

$$
\sum_{(i, j) \in E}(\vec{V}(i)-\vec{V}(j))^{2}=\vec{V}^{\top} L \vec{V}
$$

The Laplacian View

For a cut indicator vector $\vec{v} \in\{-1,1\}^{n}$ with $\vec{v}(i)=-1$ for $i \in S$ and $\vec{v}(i)=1$ for $i \in T$:

$$
\begin{aligned}
& \text { 1. } \vec{v}^{\top} L \vec{V}=\sum_{(i, j) \in E}(\vec{V}(i)-\vec{v}(j))^{2}=4 \cdot \operatorname{cut}(S, T) . \\
& \text { 2. } \vec{v}^{T} \overrightarrow{1}=|V|-|S| \text {. }
\end{aligned}
$$

Want to minimize both $\vec{v}^{\top} L \vec{V}$ (cut size) and $\vec{v}^{\top} \overrightarrow{1}$ (imbalance).
Next Step: See how this dual minimization problem is naturally solved (sort of) by eigendecomposition.

Smallest Laplacian Eigenvector

The smallest eigenvector of the Laplacian is:

$$
\vec{V}_{n}=\frac{1}{\sqrt{n}} \cdot \overrightarrow{1}=\underset{v \in \mathbb{R}^{n} \text { with }\|\vec{V}\|=1}{\arg \min } \vec{v}^{\top} L \vec{v}
$$

with eigenvalue $\lambda_{n}(\mathrm{~L})=\vec{v}_{n}^{\top} \mathrm{L} \vec{v}_{n}=0$. Why?
n : number of nodes in graph, $\mathrm{A} \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathrm{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$.

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

$$
\vec{v}_{n-1}=\underset{v \in \mathbb{R}^{n}}{\operatorname{with}\|\vec{v}\|=1, \vec{v}_{n}^{\top} \vec{v}=0} \vec{V}^{\top} L \vec{v} .
$$

If \vec{v}_{n-1} were in $\left\{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right\}^{n}$ it would have:

- $\vec{v}_{n-1}^{\top} L \vec{v}_{n-1}=\frac{4}{\sqrt{n}} \cdot \operatorname{cut}(S, T)$ as small as possible given that $\vec{v}_{n-1}^{\top} \vec{v}_{n}=\frac{1}{\sqrt{n}} \vec{V}_{n-1}^{\top} \vec{\uparrow}=\frac{|T|-|S|}{n}=0$.
- I.e., \vec{v}_{n-1} would indicate the smallest perfectly balanced cut.
- The eigenvector $\vec{v}_{n-1} \in \mathbb{R}^{n}$ is not generally binary, but still satisfies a 'relaxed' version of this property.
n : number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathrm{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$. S, T : vertex sets on different sides of cut.

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

$$
\vec{V}_{n-1}=\underset{v \in \mathbb{R}^{d} w i t h}{\arg \min \|=1,} \vec{v}^{\top} \vec{\gamma}=00 .
$$

Set S to be all nodes with $\vec{v}_{n-1}(i)<0, T$ to be all with $\vec{v}_{2}(i) \geq 0$.

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{\mathrm{L}}=\mathrm{D}^{-1 / 2} \mathrm{LD}^{-1 / 2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \bar{L}.
. Renrecont صach node hy itc corrocnondino row in $V / \subset \mathbb{R} n \times k$

Laplacian Embedding

The smallest eigenvectors of $\mathrm{L}=\mathrm{D}-\mathrm{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$
\vec{v}^{\top} \mathbf{L} \vec{v}=\sum_{(i, j) \in E}[\vec{v}(i)-\vec{v}(j)]^{2} .
$$

Embedding points with coordinates given by
$\left[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \ldots, \vec{v}_{n-k}(j)\right]$ ensures that coordinates connected by edges have minimum total squared Euclidean distance.

- Spectral Clustering
- Laplacian Eigenmaps
- Locally linear embedding
- Isomap
- Node2Vec, DeepWalk, etc. (variants on Laplacian)

Laplacian Embedding

Original Data: (not linearly separable)

k-Nearest
Neighbors Graph:

Generative Models

So Far: Have argued that spectral clustering partitions a graph effectively, along a small cut that separates the graph into large pieces. But it is difficult to give any formal guarantee on the 'quality' of the partitioning in general graphs.

Common Approach: Give a natural generative model for random inputs and analyze how the algorithm performs on inputs drawn from this model.

- Very common in algorithm design for data analysis/machine learning (can be used to justify least squares regression, k-means clustering, PCA, etc.)

Stochastic Block Model

Stochastic Block Model (Planted Partition Model): Let $G_{n}(p, q)$ be a distribution over graphs on n nodes, split randomly into two groups B and C, each with $n / 2$ nodes.

- Any two nodes in the same group are connected with probability p (including self-loops).
- Any two nodes in different groups are connected with prob. $q<p$.
- Connections are independent.

Linear Algebraic View

Let G be a stochastic block model graph drawn from $G_{n}(p, q)$.

- Let $\mathrm{A} \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G, ordered in terms of group ID.

$G_{n}(p, q)$: stochastic block model distribution. B, C : groups with $n / 2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

Expected Adjacency Matrix

Letting G be a stochastic block model graph drawn from $G_{n}(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. What is $\mathbb{E}[A]$?
$G_{n}(p, q)$: stochastic block model distribution. B, C: groups with $n / 2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

Expected Adjacency Spectrum

Letting G be a stochastic block model graph drawn from $G_{n}(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[A])_{i, j}=p$ for i, j in same group, $(\mathbb{E}[\mathrm{A}])_{i, j}=q$ otherwise.

What is $\operatorname{rank}(\mathbb{E}[A])$? What are the eigenvectors and eigenvalues of $\mathbb{E}[A]$?
$G_{n}(p, q)$: stochastic block model distribution. B, C: groups with $n / 2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

Expected Adjacency Spectrum

Letting G be a stochastic block model graph drawn from $G_{n}(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[A]$?

Expected Adjacency Spectrum

If we compute \vec{v}_{2} then we recover the communities B and C !

- Can show that for $G \sim G_{n}(p, q), A$ is close to $\mathbb{E}[A]$ with high probability (matrix concentration inequality).
- Thus, the true second eigenvector of A is close to $[1,1,1, \ldots,-1,-1,-1]$ and gives a good estimate of the communities.

