COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2022.

Lecture 19

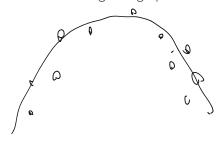
- Problem Set 3 is due Monday at 11:59pm.
- No quiz due.

Summary

Last Class: Applications of Low-Rank Approximation

- · Entity Embeddings. This inerstorm -> for

Non-linear dimensionality reduction via low-rank approximation of near-neighbor graphs



Summary

Last Class: Applications of Low-Rank Approximation

- Matrix completion
- Entity Embeddings.
- Non-linear dimensionality reduction via low-rank approximation of near-neighbor graphs

This Class: Spectral Graph Theory and Spectral Clustering

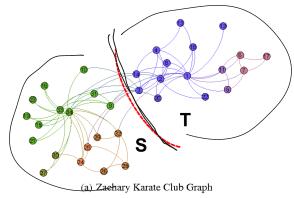
Start on graph clustering for community detection and non-linear clustering.

- Spectral clustering: finding good cuts via Laplacian eigenvectors.
- Start on stochastic block model: A simple clustered graph model where we can prove the effectiveness of spectral clustering.

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

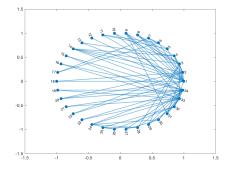
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Community detection in naturally occurring networks.



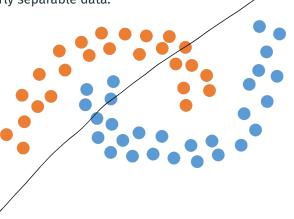
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Community detection in naturally occurring networks.



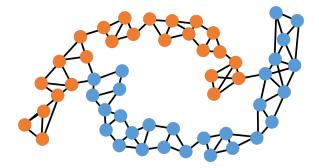
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data.



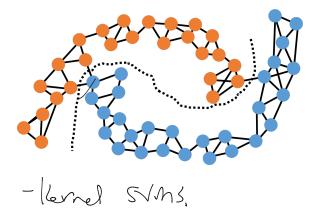
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data.



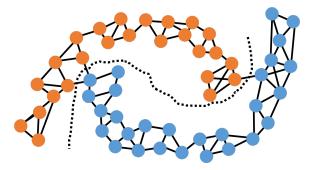
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data.



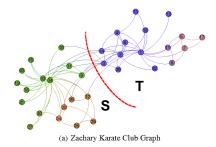
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data.

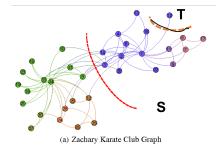


Next Few Classes: Find this cut using eigendecomposition. First – motivate why this type of approach makes sense.

Simple Idea: Partition clusters along minimum cut in graph.

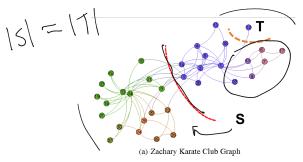


Simple Idea: Partition clusters along minimum cut in graph.



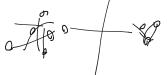
Small cuts are often not informative.

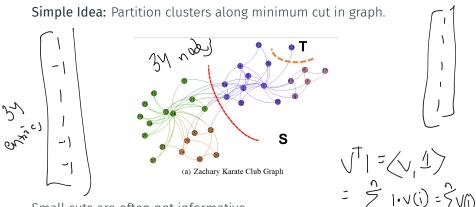
Simple Idea: Partition clusters along minimum cut in graph.



Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

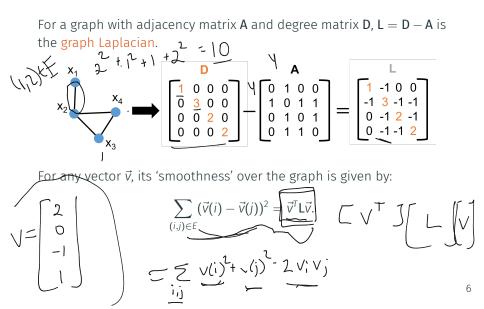




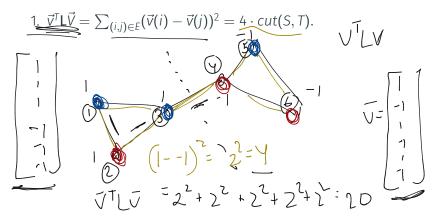
Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let $\vec{v} \in \mathbb{R}^n$ be a cut indicator: $\vec{v}(i) = 1$ if $i \in S$. $\vec{v}(i) = -1$ if $i \in T$. Want \vec{v} to have roughly equal numbers of 1s and -1s. I.e., $\vec{v}^T \vec{1} \approx 0$.



For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:



For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1.
$$\vec{v}^T \mathbf{L} \vec{V} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S, T).$$

2. $\left| \vec{v}^T \vec{1} \models \left| |\Psi| - |S| \right|$

For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1.
$$\vec{v}^T \mathbf{L} \vec{V} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S, T).$$

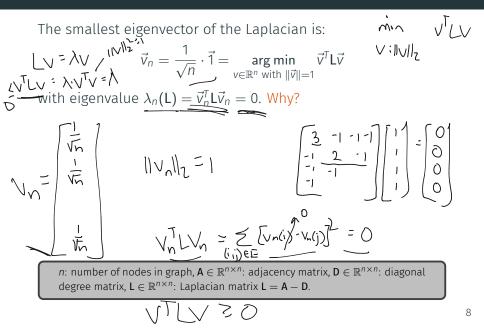
2. $\vec{v}^T \vec{1} = |V| - |S|.$

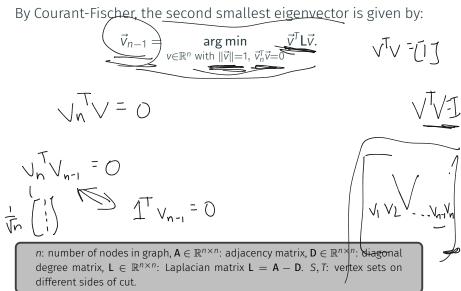
Want to minimize both $\vec{v}^T \mathbf{L} \vec{v}$ (cut size) and $\vec{v}^T \vec{1}$ (imbalance).

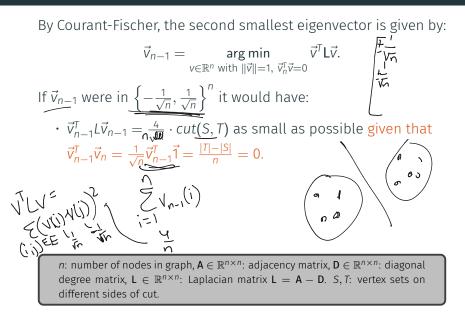
For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$: 1. $\vec{v}^T L \vec{V} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S, T)$. 2. $\vec{v}^T \vec{1} = |V| - |S|$. Want to minimize both $\vec{v}^T L \vec{v}$ (cut size) and $|\vec{v}^T \vec{1}|$ (imbalance).

Next Step: See how this dual minimization problem is naturally solved (sort of) by eigendecomposition.

Smallest Laplacian Eigenvector







lf

By Courant-Fischer, the second smallest eigenvector is given by:

$$\vec{v}_{n-1} = \underset{v \in \mathbb{R}^{n} \text{ with } \|\vec{v}\| = 1, \ \vec{v}_{n}^{T}\vec{v} = 0}{\arg\min \ \vec{v}^{T}L\vec{v}.}$$

$$\vec{v}_{n-1} \text{ were in } \left\{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right\}^{n} \text{ it would have:}$$

$$\cdot \vec{v}_{n-1}^{T}L\vec{v}_{n-1} = \frac{4}{\sqrt{n}} \cdot cut(S,T) \text{ as small as possible given that}$$

$$\vec{v}_{n-1}^{T}\vec{v}_{n} = \frac{1}{\sqrt{n}}\vec{v}_{n-1}^{T}\vec{1} = \frac{|T| - |S|}{n} = 0.$$

$$\cdot \text{ I.e., } \vec{v}_{n-1} \text{ would indicate the smallest perfectly balanced cut.}$$

By Courant-Fischer, the second smallest eigenvector is given by: $\left(\begin{array}{c} \vec{v}_{n-1} = \underset{v \in \mathbb{R}^n \text{ with } \|\vec{v}\| = 1, \ \vec{v}_n^T \vec{v} = 0}{\arg\min} \vec{v}^T L \vec{v}. \\ \text{If } \vec{v}_{n-1} \text{ were in } \left\{ -\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}} \right\}^n \text{ it would have:} \\ \end{array} \right) V \in \left(\begin{array}{c} \vec{v}_n \\ \vec{v}_n \end{array} \right)^{-1}$ • $\vec{v}_{n-1}^T L \vec{v}_{n-1} = \frac{4}{\sqrt{n}} \cdot cut(S,T)$ as small as possible given that $\vec{v}_{n-1}^T \vec{v}_n = \frac{1}{\sqrt{n}} \vec{v}_{n-1}^T \vec{1} = \frac{|T| - |S|}{n} = 0.$ $\cdot\,$ I.e., \vec{v}_{n-1} would indicate the smallest perfectly balanced <u>cut</u>. • The eigenvector $\vec{v}_{n-1} \in \mathbb{R}^n$ is not generally binary, but still satisfies a 'relaxed' version of this property. *n*: number of nodes in graph, $\mathbf{A} \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathbf{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix L = A - D. S, T: vertex sets on

different sides of cut.

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

$$\vec{V}_{n-1} = \arg\min_{\boldsymbol{v} \in \mathbb{R}^d \text{ with } \|\vec{v}\|=1, \ \vec{v}^T \vec{1}=0} \vec{V}^T \mathsf{L} \vec{V}.$$

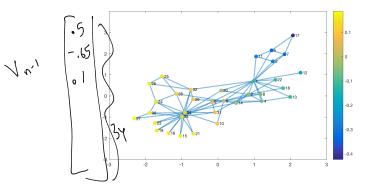
Set S to be all nodes with $\vec{v}_{n-1}(i) < 0$, T to be all with $\vec{v}_2(i) \ge 0$.

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

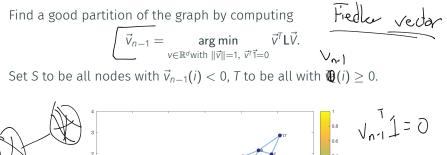
$$\vec{\lambda}_{n-1} = \arg\min_{v \in \mathbb{R}^d \text{ with } \|\vec{v}\|=1, \ \vec{v}^T \vec{1}=0} \vec{v}^T \mathsf{L} \vec{V}.$$

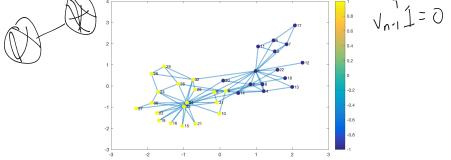
Set S to be all nodes with $\vec{v}_{n-1}(i) < 0$, T to be all with $\vec{v}_2(i) \ge 0$.



10

Cutting With the Second Laplacian Eigenvector

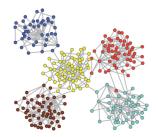




The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?



The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

• Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \overline{L} .

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \overline{L} .
- Represent each node by its corresponding row in $\mathbf{V} \in \mathbb{R}^{n \times k}$ whose columns are $\vec{v}_{n-1}, \dots \vec{v}_{n-k}$.

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts? $\int -1$

Spectral Clustering:

- Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \overline{L} .
- Represent each node by its corresponding row in $\mathbf{V} \in \mathbb{R}^{n \times k}$ whose columns are $\vec{v}_{n-1}, \dots \vec{v}_{n-k}$.
- Cluster these rows using *k*-means clustering (or really any clustering method).

The smallest eigenvectors of L = D - A give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$\vec{\mathbf{v}}^T \mathsf{L} \vec{\mathbf{v}} = \sum_{(i,j) \in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

The smallest eigenvectors of L = D - A give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

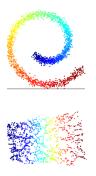
$$\vec{\mathbf{v}}^T \mathsf{L} \vec{\mathbf{v}} = \sum_{(i,j)\in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

Embedding points with coordinates given by $[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \dots, \vec{v}_{n-k}(j)]$ ensures that coordinates connected by edges have minimum total squared Euclidean distance.

The smallest eigenvectors of L = D - A give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

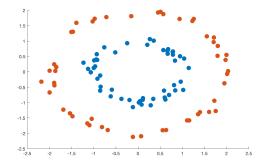
$$\vec{\mathbf{v}}^T \mathsf{L} \vec{\mathbf{v}} = \sum_{(i,j)\in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

Embedding points with coordinates given by $[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \dots, \vec{v}_{n-k}(j)]$ ensures that coordinates connected by edges have minimum total squared Euclidean distance.

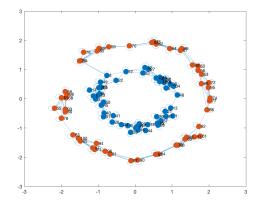


- Spectral Clustering
- Laplacian Eigenmaps
- Locally linear embedding
- Isomap
- Node2Vec, DeepWalk, etc. (variants on Laplacian)

Original Data: (not linearly separable)



k-Nearest Neighbors Graph:



Embedding with eigenvectors $\vec{v}_{n-1}, \vec{v}_{n-2}$: (linearly separable)

