
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 19

1

Logistics

• Problem Set 3 is due Monday at 11:59pm.
• No quiz due.

2

Summary

Last Class: Applications of Low-Rank Approximation

• Matrix completion

• Entity Embeddings.

• Non-linear dimensionality reduction via low-rank
approximation of near-neighbor graphs

This Class: Spectral Graph Theory and Spectral Clustering

• Start on graph clustering for community detection and
non-linear clustering.

• Spectral clustering: finding good cuts via Laplacian eigenvectors.

• Start on stochastic block model: A simple clustered graph
model where we can prove the effectiveness of spectral
clustering.

3

⇒ high
breasted
rector, → b n approx,

[.in:1
•

Summary

Last Class: Applications of Low-Rank Approximation

• Matrix completion

• Entity Embeddings.

• Non-linear dimensionality reduction via low-rank
approximation of near-neighbor graphs

This Class: Spectral Graph Theory and Spectral Clustering

• Start on graph clustering for community detection and
non-linear clustering.

• Spectral clustering: finding good cuts via Laplacian eigenvectors.

• Start on stochastic block model: A simple clustered graph
model where we can prove the effectiveness of spectral
clustering.

3

[

[

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Community detection in naturally occurring networks.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Community detection in naturally occurring networks.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

C D

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Community detection in naturally occurring networks.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

1

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

/

- kernel arms.

Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.

4

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let !v ∈ Rn be a cut indicator: !v(i) = 1 if i ∈ S. !v(i) = −1 if i ∈ T.
Want !v to have roughly equal numbers of 1s and −1s. I.e.,
!vT!1 ≈ 0.

5

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let !v ∈ Rn be a cut indicator: !v(i) = 1 if i ∈ S. !v(i) = −1 if i ∈ T.
Want !v to have roughly equal numbers of 1s and −1s. I.e.,
!vT!1 ≈ 0.

5

-

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let !v ∈ Rn be a cut indicator: !v(i) = 1 if i ∈ S. !v(i) = −1 if i ∈ T.
Want !v to have roughly equal numbers of 1s and −1s. I.e.,
!vT!1 ≈ 0.

5

1 s t " ' (§
I -

•4*4*9

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let !v ∈ Rn be a cut indicator: !v(i) = 1 if i ∈ S. !v(i) = −1 if i ∈ T.
Want !v to have roughly equal numbers of 1s and −1s. I.e.,
!vT!1 ≈ 0. 5

÷:
&!

" " " I:
L

' I U'Tsa ,1 7
=.§,1 .veils;§yci

)

⇐
→ = -

The Laplacian View

For a graph with adjacency matrix A and degree matrix D, L = D− A is
the graph Laplacian.

For any vector !v, its ‘smoothness’ over the graph is given by:
∑

(i,j)∈E

(!v(i)−!v(j))2 = !vTL!v.

6

22t .P t I +22
= I f y4 ¥

D . ,
Y

l

,
s -

EY, = D a t se l f
¥ visit¥5-2¥;

The Laplacian View

For a cut indicator vector !v ∈ {−1, 1}n with !v(i) = −1 for i ∈ S
and !v(i) = 1 for i ∈ T:

1. !vTL!V =
∑

(i,j)∈E(!v(i)−!v(j))2 = 4 · cut(S, T).

2. !vT!1 = |V|− |S|.

Want to minimize both !vTL!v (cut size) and !vT!1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.

7

s

-

o - t1¥:÷s⇒¥
¥.ie.":&,• 4--D's 22=4
t

f t w 522+22+ I t I t f : p -

The Laplacian View

For a cut indicator vector !v ∈ {−1, 1}n with !v(i) = −1 for i ∈ S
and !v(i) = 1 for i ∈ T:

1. !vTL!V =
∑

(i,j)∈E(!v(i)−!v(j))2 = 4 · cut(S, T).
2. !vT!1 = |V|− |S|.

Want to minimize both !vTL!v (cut size) and !vT!1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.

7

E edges

¥ 1

The Laplacian View

For a cut indicator vector !v ∈ {−1, 1}n with !v(i) = −1 for i ∈ S
and !v(i) = 1 for i ∈ T:

1. !vTL!V =
∑

(i,j)∈E(!v(i)−!v(j))2 = 4 · cut(S, T).
2. !vT!1 = |V|− |S|.

Want to minimize both !vTL!v (cut size) and !vT!1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.

7

The Laplacian View

For a cut indicator vector !v ∈ {−1, 1}n with !v(i) = −1 for i ∈ S
and !v(i) = 1 for i ∈ T:

1. !vTL!V =
∑

(i,j)∈E(!v(i)−!v(j))2 = 4 · cut(S, T).
2. !vT!1 = |V|− |S|.

Want to minimize both !vTL!v (cut size) and !vT!1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.

7

l
n

Smallest Laplacian Eigenvector

The smallest eigenvector of the Laplacian is:

!vn =
1√
n
·!1 = argmin

v∈Rn with ‖!v‖=1
!vTL!v

with eigenvalue λn(L) = !vTnL!vn = 0. Why?

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A− D.

8

n in v ' l l
↳ sayin'""' Villullz

gut:X.vTv='ll -

o - t -

un:/
:#

"" " i n E÷¥%:/?

-
vnIVn%Ee.in
#nDtIvTLV30

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

!vn−1 = argmin
v∈Rn with ‖!v‖=1, !vTn!v=0

!vTL!v.

If !vn−1 were in
{
− 1√

n ,
1√
n

}n
it would have:

• !vTn−1L!vn−1 =
4√
n · cut(S, T) as small as possible given that

!vTn−1!vn = 1√
n
!vTn−1

!1 = |T|−|S|
n = 0.

• I.e., !vn−1 would indicate the smallest perfectly balanced
cut.

• The eigenvector !vn−1 ∈ Rn is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A − D. S, T: vertex sets on
different sides of cut.

9

-

B y e viv:c]

✓ntvs ovtv-I.IE?
jE5evn....oEnV...Ifrf

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

!vn−1 = argmin
v∈Rn with ‖!v‖=1, !vTn!v=0

!vTL!v.

If !vn−1 were in
{
− 1√

n ,
1√
n

}n
it would have:

• !vTn−1L!vn−1 =
4√
n · cut(S, T) as small as possible given that

!vTn−1!vn = 1√
n
!vTn−1

!1 = |T|−|S|
n = 0.

• I.e., !vn−1 would indicate the smallest perfectly balanced
cut.

• The eigenvector !vn−1 ∈ Rn is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A − D. S, T: vertex sets on
different sides of cut.

9

-

=

t:*

÷÷÷⇐*÷
÷±E÷i

0:40

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

!vn−1 = argmin
v∈Rn with ‖!v‖=1, !vTn!v=0

!vTL!v.

If !vn−1 were in
{
− 1√

n ,
1√
n

}n
it would have:

• !vTn−1L!vn−1 =
4√
n · cut(S, T) as small as possible given that

!vTn−1!vn = 1√
n
!vTn−1

!1 = |T|−|S|
n = 0.

• I.e., !vn−1 would indicate the smallest perfectly balanced
cut.

• The eigenvector !vn−1 ∈ Rn is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A − D. S, T: vertex sets on
different sides of cut.

9

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

!vn−1 = argmin
v∈Rn with ‖!v‖=1, !vTn!v=0

!vTL!v.

If !vn−1 were in
{
− 1√

n ,
1√
n

}n
it would have:

• !vTn−1L!vn−1 =
4√
n · cut(S, T) as small as possible given that

!vTn−1!vn = 1√
n
!vTn−1

!1 = |T|−|S|
n = 0.

• I.e., !vn−1 would indicate the smallest perfectly balanced
cut.

• The eigenvector !vn−1 ∈ Rn is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A − D. S, T: vertex sets on
different sides of cut.

9

[-vea¥÷5

t

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

!vn−1 = argmin
v∈Rdwith ‖!v‖=1, !vT!1=0

!vTL!V.

Set S to be all nodes with !vn−1(i) < 0, T to be all with !v2(i) ≥ 0.

10

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

!vn−1 = argmin
v∈Rdwith ‖!v‖=1, !vT!1=0

!vTL!V.

Set S to be all nodes with !vn−1(i) < 0, T to be all with !v2(i) ≥ 0.

10

r n . . µ
§,

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

!vn−1 = argmin
v∈Rdwith ‖!v‖=1, !vT!1=0

!vTL!V.

Set S to be all nodes with !vn−1(i) < 0, T to be all with !v2(i) ≥ 0.

10

[
Fiedkye
ytar@n.l

¥ 0 unitss o

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A− D.

11

-

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A− D.

11

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

• Compute smallest k nonzero eigenvectors !vn−1, . . . ,!vn−k of L.

• Represent each node by its corresponding row in V ∈ Rn×k

whose columns are !vn−1, . . .!vn−k.

• Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A− D.

11

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

• Compute smallest k nonzero eigenvectors !vn−1, . . . ,!vn−k of L.

• Represent each node by its corresponding row in V ∈ Rn×k

whose columns are !vn−1, . . .!vn−k.

• Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A− D.

11

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

• Compute smallest k nonzero eigenvectors !vn−1, . . . ,!vn−k of L.

• Represent each node by its corresponding row in V ∈ Rn×k

whose columns are !vn−1, . . .!vn−k.

• Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A− D.

11

K
o

n
€
¥µ§n-i

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

• Compute smallest k nonzero eigenvectors !vn−1, . . . ,!vn−k of L.

• Represent each node by its corresponding row in V ∈ Rn×k

whose columns are !vn−1, . . .!vn−k.

• Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A− D.

11

it

Laplacian Embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

!vTL!v =
∑

(i,j)∈E

[!v(i)−!v(j)]2.

Embedding points with coordinates given by
[!vn−1(j),!vn−2(j), . . . ,!vn−k(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.

• Spectral Clustering

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Node2Vec, DeepWalk, etc.
(variants on Laplacian)

12

Laplacian Embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

!vTL!v =
∑

(i,j)∈E

[!v(i)−!v(j)]2.

Embedding points with coordinates given by
[!vn−1(j),!vn−2(j), . . . ,!vn−k(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.

• Spectral Clustering

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Node2Vec, DeepWalk, etc.
(variants on Laplacian)

12

Laplacian Embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

!vTL!v =
∑

(i,j)∈E

[!v(i)−!v(j)]2.

Embedding points with coordinates given by
[!vn−1(j),!vn−2(j), . . . ,!vn−k(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.

• Spectral Clustering

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Node2Vec, DeepWalk, etc.
(variants on Laplacian) 12

Laplacian Embedding

Original Data: (not linearly separable)

13

Laplacian Embedding

k-Nearest Neighbors Graph:

13

Laplacian Embedding

Embedding with eigenvectors !vn−1,!vn−2: (linearly separable)

13

