COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 19

Logistics

- Problem Set 3 is due Monday at 11:59pm.
- No quiz due.

Summary

Last Class: Applications of Low-Rank Approximation

- Matrix completion
- Entity Embeddings. Thij vectors \rightarrow lor approx. Non-linear dimensionality reduction via low-rank approximation of near-neighbor graphs

Summary

Last Class: Applications of Low-Rank Approximation

- Matrix completion
- Entity Embeddings.
- Non-linear dimensionality reduction via low-rank approximation of near-neighbor graphs

This Class: Spectral Graph Theory and Spectral Clustering
Start on graph clustering for community detection and non-linear clustering.

- Spectral clustering: finding good cuts via Laplacian eigenvectors.

Start on stochastic block model: A simple clustered graph model where we can prove the effectiveness of spectral clustering.

Spectral Clustering

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Spectral Clustering

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Community detection in naturally occurring networks.

Spectral Clustering

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Community detection in naturally occurring networks.

Spectral Clustering

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data.

Spectral Clustering

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data.

Spectral Clustering

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data.

Spectral Clustering

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First motivate why this type of approach makes sense.

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

(a) Zachary Karate Club Graph

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

(a) Zachary Karate Club Graph

Small cuts are often not informative.

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.
Solution: Encourage cuts that separate large sections of the graph.

Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

$$
\begin{aligned}
& \text { in graph. }\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \\
& V^{T} \mid=\langle v, 1\rangle \\
& =\sum_{i=1}^{n} 1 \cdot v(i)=\sum_{i=1}^{n} v(i)
\end{aligned}
$$

Solution: Encourage cuts that separate large sections of the graph.

- Let $\vec{v} \in \mathbb{R}^{n}$ be a cut indicator: $\vec{v}(i)=1$ if $i \in S . \vec{v}(i)=-1$ if $i \in T$. Want \vec{v} to have roughly equal numbers of 1 s and -is. I.e., $\vec{v}^{\top} \vec{\gamma} \approx 0$.

The Laplacian View

For a graph with adjacency matrix A and degree matrix $\mathrm{D}, \mathrm{L}=\mathrm{D}-\mathrm{A}$ is
$(1,2)^{x+}$

$$
\begin{aligned}
& \text { the graph Laplacian. } \\
& x_{1} z^{2}+1^{2}+1+2^{2}=10 \\
& y \\
& \underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]}_{x_{3}}-4\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 3 & -1 & -1 \\
0 & -1 & 2 & -1 \\
0 & -1 & -1 & 2
\end{array}\right]
\end{aligned}
$$

For vector \vec{v}, its 'smoothness' over the graph is given by:

$$
\begin{aligned}
& v=\left[\begin{array}{c}
2 \\
0 \\
-1 \\
1
\end{array}\right] \\
& \sum_{(i, j) \in E}(\vec{v}(i)-\vec{v}(j))^{2}=\underbrace{\vec{v}^{\top} L \vec{v}} \\
& {\left[V^{\top}\right][L \| V]} \\
& =\sum_{i, j} v(i)^{2}+v(i)^{2}-2 v_{i} v j
\end{aligned}
$$

The Laplacian View

For a cut indicator vector $\vec{v} \in\{-1,1\}^{n}$ with $\vec{v}(i)=-1$ for $i \in S$ and $\vec{v}(i)=1$ for $i \in T$:

$$
\begin{aligned}
& \xrightarrow{1-\vec{v}^{\top} L \vec{V}}=\sum_{(i, j) \in E}(\vec{v}(i)-\vec{v}(j))^{2}=\frac{4 \cdot \operatorname{cut}(S, T)}{1} . \\
& V^{\top} L V \\
& {\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1 \\
-1 \\
-1
\end{array}\right]} \\
& \begin{array}{l}
\text { (1) } 1 \text { (2) } \quad(1--1)^{2}=2^{2}=-\frac{1}{2}=1 \\
V^{\top} L \bar{U}=2^{2}+2^{2}+2^{2}+2^{2}+2^{2}=20
\end{array}
\end{aligned}
$$

The Laplacian View

E edes

For a cut indicator vector $\vec{v} \in\{-1,1\}^{n}$ with $\vec{v}(i)=-1$ for $i \in S$ and $\vec{v}(i)=1$ for $i \in T$:

1. $\vec{v}^{\top} L \vec{V}=\sum_{(i, j) \in E}(\vec{V}(i)-\vec{V}(j))^{2}=4 \cdot \operatorname{cut}(S, T)$.
2. $\left|\vec{v}^{T} \overrightarrow{1}\right|=||\vec{V}|-|S||$

The Laplacian View

For a cut indicator vector $\vec{v} \in\{-1,1\}^{n}$ with $\vec{v}(i)=-1$ for $i \in S$ and $\vec{v}(i)=1$ for $i \in T$:

1. $\vec{v}^{\top} L \vec{V}=\sum_{(i, j) \in E}(\vec{V}(i)-\vec{v}(j))^{2}=4 \cdot \operatorname{cut}(S, T)$.
2. $\vec{V}^{\top} \overrightarrow{1}=|V|-|S|$.

Want to minimize both $\vec{v}^{\top} L \vec{v}$ (cut size) and $\vec{v}^{\top} \overrightarrow{1}$ (imbalance).

The Laplacian View

For a cut indicator vector $\vec{v} \in\{-1,1\}^{n}$ with $\vec{v}(i)=-1$ for $i \in S$ and $\vec{v}(i)=1$ for $i \in T$:

1. $\vec{V}^{\top} L \vec{V}=\sum_{(i, j) \in E}(\vec{V}(i)-\vec{V}(j))^{2}=4 \cdot \operatorname{cut}(S, T)$.
2. $\vec{V}^{\top} \overrightarrow{1}=|V|-|S|$.

Want to minimize both $\vec{v}^{\top} L \vec{v}$ (cut size) and $\left|\vec{v}^{\top} \vec{\eta}\right|(i m b a l a n c e)$.
Next Step: See how this dual minimization problem is naturally solved (sort of) by eigendecomposition.

Smallest Laplacian Eigenvector
The smallest eigenvector of the Laplacian is:
$\min V^{\top} L V$

$$
L V=\lambda V /\left\|_{V}\right\|_{2}^{2, ~} \vec{V}_{n}=\frac{1}{\sqrt{n}} \cdot \overrightarrow{1}=\underset{V \in \mathbb{R}^{n} \text { with }\|\vec{v}\|=1}{\arg \min _{V}} \vec{V}^{\top} L \vec{V}
$$

$$
v:\|v\|_{2}
$$

$\xrightarrow{\Delta V^{\top} L v}$ with eigenvalue $\lambda_{n}(L)=V^{\top} V=\lambda$

$$
\left.\begin{array}{l}
V_{n}=\left[\begin{array}{c}
\frac{1}{\sqrt{n}} \\
\frac{1}{\sqrt{n}} \\
1 \\
\frac{1}{V_{n}}
\end{array}\right] \quad\left\|V_{n}\right\|_{2}=1 \quad\left[\begin{array}{ccc}
3 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
-1 \\
-1 \\
-1
\end{array}\right)=1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
V_{n}^{T} L_{n}=\sum_{(i, i) \in E}\left[v_{n}(i)-V_{n}(j)\right]^{2}=0
\end{array}\right.
$$

n : number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $D \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$.

$$
V^{T} L V \geq 0
$$

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

$$
v^{T} v=[i]
$$

n : number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathrm{D} \in \mathbb{R}^{n \times n}$: diagonal
 degree matrix, $\mathrm{L} \in \mathbb{R}^{n \times n}$: Laplacian matrix $\mathrm{L}=\mathrm{A}-\mathrm{D}$. S, T : vertex sets on different sides of cut.

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

- $\vec{v}_{n-1}^{T} L \vec{v}_{n-1}=\frac{4}{\sqrt{d e l l}} \cdot \operatorname{cut}(S, T)$ as small as possible given that $\vec{v}_{n-1}^{\top} \vec{v}_{n}=\frac{1}{\sqrt{n}} \vec{v}_{n-1}^{\top} \vec{\tau}=\frac{|T|-|S|}{n}=0$.

n : number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $D \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$. S, T : vertex sets on different sides of cut.

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

$$
\vec{V}_{n-1}=\underset{v \in \mathbb{R}^{n} \text { with }\|\vec{v}\|=1, \vec{v}_{n}^{\top} \vec{v}=0}{\arg \min } \vec{V}^{\top} L \vec{v} .
$$

If \vec{v}_{n-1} were in $\left\{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right\}^{n}$ it would have:

- $\vec{v}_{n-1}^{T} L \vec{v}_{n-1}=\frac{4}{\sqrt{n}} \cdot \operatorname{cut}(S, T)$ as small as possible given that $\vec{v}_{n-1}^{\top} \vec{v}_{n}=\frac{1}{\sqrt{n}} \vec{v}_{n-1}^{\top} \vec{\imath}=\frac{|T|-|S|}{n}=0$.
- I.e., \vec{v}_{n-1} would indicate the smallest perfectly balanced cut.
n : number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathrm{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$. S, T : vertex sets on different sides of cut.

Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

$$
\left[\vec{V}_{n-1}=\underset{v \in \mathbb{R}^{n}}{\operatorname{with} \underline{\|\vec{v}\|=1, \vec{v}_{n}^{\top} \vec{v}=0}} \vec{V}^{\top} L \vec{V} .\right.
$$

If \vec{v}_{n-1} were in $\left\{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right\}^{n}$ it would have:

- $\vec{v}_{n-1}^{\top} L \vec{v}_{n-1}=\frac{4}{\sqrt{n}} \cdot \operatorname{cut}(S, T)$ as small as possible given that $\vec{v}_{n-1}^{\top} \vec{v}_{n}=\frac{1}{\sqrt{n}} \vec{v}_{n-1}^{\top} \vec{\imath}=\frac{|T|-|S|}{n}=0$.

- I.e., \vec{v}_{n-1} would indicate the smallest perfectly balanced cut.

- The eigenvector $\vec{v}_{n-1} \in \mathbb{R}^{n}$ is not generally binary, but still satisfies a 'relaxed' version of this property.
n : number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathrm{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$. S, T : vertex sets on different sides of cut.

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

$$
\vec{V}_{n-1}=\underset{v \in \mathbb{R}^{d} \text { with }\|\vec{V}\|=1, \vec{v}^{\top} \vec{\imath}=0}{\arg \min } \vec{V}^{\top} \mathbf{L} \vec{V} .
$$

Set S to be all nodes with $\vec{v}_{n-1}(i)<0, T$ to be all with $\vec{v}_{2}(i) \geq 0$.

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

$$
\vec{V}_{n-1}=\underset{v \in \mathbb{R}^{d} \text { with }\|\vec{V}\|=1, \vec{v}^{\top} \vec{T}=0}{\arg \min } \vec{V}^{\top} \mathbf{L} \vec{V} .
$$

Set S to be all nodes with $\vec{v}_{n-1}(i)<0, T$ to be all with $\vec{v}_{2}(i) \geq 0$.

Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

$$
\sqrt{\vec{V}_{n-1}}=\underset{v \in \mathbb{R}^{d} \text { with }\|\vec{v}\|=1, \vec{v}^{\top} \vec{\imath}=0}{\arg \min } \vec{v}^{\top} L \vec{V} .
$$

Set S to be all nodes with $\vec{v}_{n-1}(i)<0, T$ to be all with $(i) \geq 0$.

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\underline{\bar{L}}=\mathrm{D}^{-1 / 2} \mathrm{LD}^{-1 / 2}$.
n : number of nodes in graph, $\mathrm{A} \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathrm{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$.

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{\mathrm{L}}=\mathrm{D}^{-1 / 2} \mathrm{LD}^{-1 / 2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

n : number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathrm{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$.

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{\mathrm{L}}=\mathrm{D}^{-1 / 2} \mathrm{LD}^{-1 / 2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

n : number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathrm{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$.

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{\mathrm{L}}=\mathrm{D}^{-1 / 2} \mathbf{L D}^{-1 / 2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \bar{L}.
n : number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathrm{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$.

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{\mathrm{L}}=\mathrm{D}^{-1 / 2} \mathrm{LD}^{-1 / 2}$.
Important Consideration: What to do when we want tol split the graph into more than two parts?

Spectral Clustering:

n

- Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \bar{L}.
- Represent each node by its corresponding row in $\mathrm{V} \in \mathbb{R}^{n \times k}$ whose columns are $\vec{v}_{n-1}, \ldots \vec{v}_{n-k}$.
n : number of nodes in graph, $\mathrm{A} \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathrm{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$.

Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{\mathrm{L}}=\mathrm{D}^{-1 / 2} \mathrm{LD}^{-1 / 2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \bar{L}.
- Represent each node by its corresponding row in $\mathrm{V} \in \mathbb{R}^{n \times k}$ whose columns are $\vec{v}_{n-1}, \ldots \vec{v}_{n-k}$.
- Cluster these rows using k-means clustering (or really any clustering method).
n : number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathrm{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L=A-D$.

Laplacian Embedding

The smallest eigenvectors of $\mathrm{L}=\mathrm{D}-\mathrm{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$
\vec{v}^{\top} L \vec{v}=\sum_{(i, j) \in E}[\vec{v}(i)-\vec{v}(j)]^{2} .
$$

Laplacian Embedding

The smallest eigenvectors of $\mathrm{L}=\mathrm{D}-\mathrm{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$
\vec{v}^{\top} L \vec{V}=\sum_{(i, j) \in E}[\vec{v}(i)-\vec{v}(j)]^{2} .
$$

Embedding points with coordinates given by
$\left[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \ldots, \vec{v}_{n-k}(j)\right]$ ensures that coordinates connected by edges have minimum total squared Euclidean distance.

Laplacian Embedding

The smallest eigenvectors of $\mathrm{L}=\mathrm{D}-\mathrm{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$
\vec{v}^{\top} L \vec{V}=\sum_{(i, j) \in E}[\vec{v}(i)-\vec{v}(j)]^{2} .
$$

Embedding points with coordinates given by
$\left[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \ldots, \vec{v}_{n-k}(j)\right]$ ensures that coordinates connected by edges have minimum total squared Euclidean distance.

- Spectral Clustering
- Laplacian Eigenmaps
- Locally linear embedding
- Isomap
- Node2Vec, DeepWalk, etc. (variants on Laplacian)

Laplacian Embedding

Original Data: (not linearly separable)

Laplacian Embedding

k-Nearest Neighbors Graph:

Laplacian Embedding

Embedding with eigenvectors $\vec{v}_{n-1}, \vec{v}_{n-2}$: (linearly separable)

