# COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2022. Lecture 18

## Logistics

- Problem Set 3 is due Monday at 11:59pm.
- · No quiz due Monday.
- I will hold additional office hours on Thursday from 11:30am-12:40pm.

#### Summary

#### Last Class

 The Singular Value Decomposition (SVD) and its connection to eigendecomposition of X<sup>T</sup>X and XX<sup>T</sup>, and low-rank approximation.

# This Class: Application of Low-Rank Approximation Beyond Compression

- Low-rank matrix completion (predicting missing measurements using low-rank structure).
- Entity embeddings (e.g., word embeddings, node embeddings).
- Low-rank approximation for non-linear dimensionality reduction.
- Eigendecomposition to partition graphs into clusters.

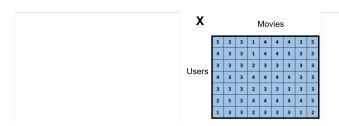
#### **SVD Review**

- Every  $\mathbf{X} \in \mathbb{R}^{n \times d}$  can be written in its SVD as  $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ .
- $\mathbf{U} \in \mathbb{R}^{n \times r}$  (orthonormal) contains the eigenvectors of  $\mathbf{X}^\mathsf{T}$ .  $\mathbf{V} \in \mathbb{R}^{d \times r}$  (orthonormal) contains the eigenvectors of  $\mathbf{X}^\mathsf{T}\mathbf{X}$ .  $\mathbf{\Sigma} \in \mathbb{R}^{r \times r}$  (diagonal) contains their eigenvalues.

$$\cdot \ \, \mathsf{U}_{k}\mathsf{U}_{k}^{\mathsf{T}}\mathsf{X} = \mathsf{X}\mathsf{V}_{k}\mathsf{V}_{k}^{\mathsf{T}} = \mathsf{U}_{k}\boldsymbol{\Sigma}_{k}\mathsf{V}_{k}^{\mathsf{T}} = \underset{\mathsf{B} \text{ s.t. rank}(\mathsf{B}) \leq k}{\mathsf{arg min}} \|\mathsf{X} - \mathsf{B}\|_{\mathsf{F}}.$$

## **Matrix Completion**

Consider a matrix  $X \in \mathbb{R}^{n \times d}$  which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.



$$\textbf{Solve: Y} = \mathop{\arg\min}_{\text{B s.t. rank(B)} \leq k} \sum_{\text{observed } (j,k)} \left[ \mathbf{X}_{j,k} - \mathbf{B}_{j,k} \right]^2$$

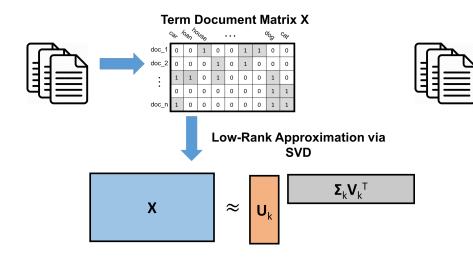
Under certain assumptions, can show that **Y** well approximates **X** on both the observed and (most importantly) unobserved entries.

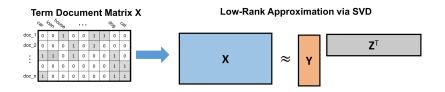
#### **Entity Embeddings**

Dimensionality reduction embeds d-dimensional vectors into k dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

**Classic Approach:** Convert each item into a (very) high-dimensional feature vector and then apply low-rank approximation.



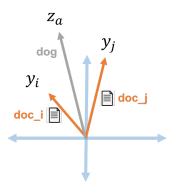


• If the error  $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$  is small, then on average,

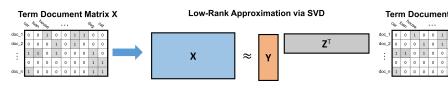
$$X_{i,a} \approx (YZ^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

- I.e.,  $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$  when  $doc_i$  contains  $word_a$ .
- If  $doc_i$  and  $doc_j$  both contain  $word_a$ ,  $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$ .

If  $doc_i$  and  $doc_j$  both contain  $word_a$ ,  $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$ 



**Another View:** Each column of **Y** represents a 'topic'.  $\vec{y_i}(j)$  indicates how much  $doc_i$  belongs to topic j.  $\vec{z_a}(j)$  indicates how much  $word_a$  associates with that topic.



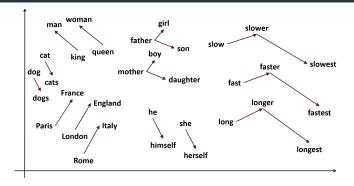
- Just like with documents,  $\vec{z}_a$  and  $\vec{z}_b$  will tend to have high dot product if  $word_a$  and  $word_b$  appear in many of the same documents.
- · In an SVD decomposition we set  $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_K^T$ .
- The columns of  $V_k$  are equivalently: the top k eigenvectors of  $X^TX$ .
- Claim:  $ZZ^T$  is the best rank-k approximation of  $X^TX$ . I.e.,  $\arg\min_{\text{rank} = k} \|X^TX B\|_F$

## **Example: Word Embedding**

LSA gives a way of embedding words into *k*-dimensional space.

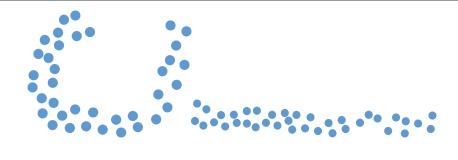
- Embedding is via low-rank approximation of  $X^TX$ : where  $(X^TX)_{a,b}$  is the number of documents that both  $word_a$  and  $word_b$  appear in.
- Think about  $X^TX$  as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between  $word_a$  and  $word_b$ .
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing X<sup>T</sup>X with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.

## **Example: Word Embedding**



**Note:** word2vec is typically described as a neural-network method, but can be viewed as just a low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.

# Non-Linear Dimensionality Reduction

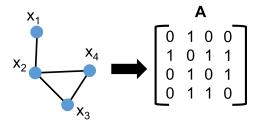




#### Linear Algebraic Representation of a Graph

Once we have connected n data points  $x_1, \ldots, x_n$  into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$  with  $\mathbf{A}_{i,j} =$ edge weight between nodes i and j



In LSA example, when X is the term-document matrix,  $X^TX$  is like an adjacency matrix, where  $word_a$  and  $word_b$  are connected if they appear in at least 1 document together (edge weight is # documents they appear in together).

# **Adjacency Matrix Eigenvectors**

How do we compute an optimal low-rank approximation of A?

- Project onto the top k eigenvectors of  $\mathbf{A}^T \mathbf{A} = \mathbf{A}^2$ . These are just the eigenvectors of  $\mathbf{A}$ .
- $A \approx AVV^T$ . The rows of AV can be thought of as 'embeddings' for the vertices.
- Similar vertices (close with regards to graph proximity) should have similar embeddings.

## Spectral Embedding





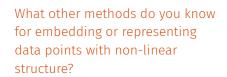
**Step 1:** Produce a nearest neighbor graph based on your input data in  $\mathbb{R}^d$ .

**Step 2:** Apply low-rank approximation to the graph adjacency matrix to produce embeddings in  $\mathbb{R}^k$ .

**Step 3:** Work with the data in the embedded space. Where distances represent distances in your original 'non-linear space.'

# Spectral Embedding







Questions?