COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 18

Logistics

- Problem Set 3 is due Monday at 11:59pm.
- No quiz due Monday.
- I will hold additional office hours on Thursday from 11:30am-12:40pm.

Summary

Last Class

- The Singular Value Decomposition (SVD) and its connection to eigendecomposition of $\mathbf{X}^{\top} \mathbf{X}$ and $\mathbf{X X}^{\top}$, and low-rank approximation.

This Class: Application of Low-Rank Approximation Beyond Compression

- Low-rank matrix completion (predicting missing measurements using low-rank structure).
- Entity embeddings (e.g., word embeddings, node embeddings).
- Low-rank approximation for non-linear dimensionality reduction.
- Eigendecomposition to partitiongraphs into elusters.

SVD Review

$$
x=
$$

- Every $\mathbf{X} \in \mathbb{R}^{n \times d}$ can be written in its SVD as $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$.

SVD Review

- Every $X \in \mathbb{R}^{n \times d}$ can be written in its $S V D$ as $U \boldsymbol{\Sigma} \mathbf{V}^{\top}$.

$$
\operatorname{rank}(x)=r
$$

- $U \in \mathbb{R}^{n \times r}$ (orthonormal) contains the eigenvectors of $X X^{\top}$.
$\mathrm{V} \in \mathbb{R}^{d \times r}$ (orthonormal) contains the eigenvectors of $\mathrm{X}^{\top} \mathrm{X}$.
$\boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}$ (diagonal) contains their eigenvalues.

SVD Review

- Every $\mathbf{X} \in \mathbb{R}^{n \times d}$ can be written in its SVD as $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$.
- $\mathrm{U} \in \mathbb{R}^{n \times r}$ (orthonormal) contains the eigenvectors of XX^{\top}.
$\underline{V \in \mathbb{R}^{d \times r}}$ (orthonormal) contains the eigenvectors of $X^{\top} X$.
$\boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}$ (diagonal) contains their eigenvalues.

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix).

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.
X

| Movies | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 3 | 1 | 4 | 4 | 4 | 3 | 5 |
| 4 | 3 | 3 | 1 | 4 | 4 | 5 | 3 | 5 |
| 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 |
| 4 | 3 | 3 | 4 | 4 | 4 | 4 | 3 | 3 |
| 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 |
| 2 | 5 | 3 | 4 | 4 | 4 | 4 | 4 | 5 |
| 1 | 3 | 3 | 2 | 3 | 3 | 3 | 1 | 2 |

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (ie., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Solve: $Y=\underset{\text { B st. } \frac{\operatorname{rank}(B) \leq k}{\arg \min }}{\sum_{\text {observed }(j, k)}\left[X_{j, k}-B_{j, k}\right]^{2}}$
$\min \|X-B\|_{F}$
B^{\prime}. $\operatorname{rank}(B) \leq k$

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Solve: $Y=\underset{B \text { s.t. }}{\arg \operatorname{rank}(B) \leq k} \sum_{\text {observed }(j, k)}\left[X_{j, k}-B_{j, k}\right]^{2}$

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank $-k$ (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Solve: $Y=\underset{B \text { s.t. } \operatorname{rank}(B) \leq k}{\arg \min } \sum_{\text {observed }(j, k)}\left[X_{j, k}-B_{j, k}\right]^{2}$
Under certain assumptions, can show that Y well approximates X on both the observed and (most importantly) unobserved entries.

Entity Embeddings

n^{d}

Dimensionality reduction embeds d-dimensional vectors into k dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

$$
[=][=] \rightarrow[.5,1,5]
$$

Entity Embeddings

Dimensionality reduction embeds d-dimensional vectors into k dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Classic Approach: Convert each item into a (very) high-dimensional feature vector and then apply low-rank approximation.

Example: Latent Semantic Analysis

Example: Latent Semantic Analysis

Example: Latent Semantic Analysis

Term Document Matrix X

Low-Rank Approximation via SVD

Example: Latent Semantic Analysis

Term Document Matrix X

doc_1	0	0	1	0	0	1	1	0	0
doc_2	0	0	0	1	0	1	0	0	0
:	1	1	0	1	0	0	0	1	0
	0	0	0	0	0	0	0	1	1
doc_n	1	0	0	0	0	0	0	1	1

Low-Rank Approximation via SVD

- If the error $\left\|\mathbf{X}-\mathrm{YZ}^{\top}\right\|_{F}$ is small, then on average,

$$
\underline{\mathrm{X}_{i, a}} \approx \underline{\left(\mathrm{YZ}^{\top}\right)_{i, a}}=\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle .
$$

Example: Latent Semantic Analysis

Term Document Matrix X

Low-Rank Approximation via SVD

- If the error $\left\|\mathrm{X}-\mathrm{YZ}^{\top}\right\|_{F}$ is small, then on average,

$$
\mathrm{X}_{\mathrm{i}, a} \approx(\mathrm{YZ})_{i, a}=\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle .
$$

- I.e., $\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx 1$ when doc contains word $_{a}$.

Example: Latent Semantic Analysis

Term Document Matrix X

Low-Rank Approximation via SVD

- If the error $\left\|\mathrm{X}-\mathrm{YZ}^{\top}\right\|_{F}$ is small, then on average,

$$
\mathrm{X}_{\mathrm{i}, a} \approx(\mathrm{YZ})_{i, a}=\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle .
$$

- I.e., $\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx 1$ when doc contains word ${ }_{a}$.
- If doc \underline{c}_{i} and doc both contain word $_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$.

Example: Latent Semantic Analysis

If doc c_{i} and doc $_{j}$ both contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$

Example: Latent Semantic Analysis

If doc c_{i} and doc c_{j} both contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$

Another View: Each column of Y represents a 'topic'. $\vec{y}_{i}(j)$ indicates how much doc c_{i} belongs to topic j. $\vec{z}_{a}(j)$ indicates how much word ${ }_{a}$ associates with that topic.

Example: Latent Semantic Analysis

Term Document Matrix X

Low-Rank Approximation via SVD

- Just like with documents, \vec{z}_{a} and \vec{z}_{b} will tend to have high dot product if word ${ }_{a}$ and word ${ }_{b}$ appear in many of the same documents.

Example: Latent Semantic Analysis

Term Document Matrix \mathbf{X}

Low-Rank Approximation via SVD

- Just like with documents, \vec{z}_{a} and \vec{z}_{b} will tend to have high dot product if word ${ }_{a}$ and word $_{b}$ appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^{\top}=\boldsymbol{\Sigma}_{k} \mathbf{V}_{K}^{\top}$.
- The columns of V_{k} are equivalently: the top k eigenvectors of $\operatorname{nor}^{\top} x .\left[\begin{array}{cc}x^{\top} \\ x^{2 c s} & x\end{array}\right]=[$

Example: Latent Semantic Analysis

Term Document Matrix \mathbf{X}

Low-Rank Approximation via SVD

- Just like with documents, \vec{z}_{a} and \vec{z}_{b} will tend to have high dot product if word $_{a}$ and word $_{b}$ appear in many of the same word documents.
- In an SVD decomposition we set $\underline{Z^{\top}=\boldsymbol{\Sigma}_{k} V_{K}^{\top}}$. ur $\tau^{2} /\left[7^{\dagger \top}\right.$
- The columns of V_{k} are equivalently: the top k eigenvectors of十 $X^{\top} \mathrm{X}$.
s, 主 Claim: Z^{\top} is the best rank- k approximation of $\mathbf{X}^{\top} \mathbf{X}$. I.e., $\arg \min _{\text {rank }-k B}\left\|\mathbf{X}^{\top} \mathbf{X}-\mathrm{B}\right\|_{F}$

$$
S V D \underset{\sim}{X^{\top}} x=V \Sigma U_{\widetilde{I}}^{\top} \cup \Sigma V^{\top}=V \Sigma^{2} V^{\top}
$$

Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{\top} \mathbf{X}$: where $\left(\mathbf{X}^{\top} \mathbf{X}\right)_{a, b}$ is the number of documents that both word ${ }_{a}$ and word $_{b}$ appear in.

Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{\top} \mathbf{X}$: where $\left(\mathbf{X}^{\top} \mathbf{X}\right)_{a, b}$ is the number of documents that both word ${ }_{a}$ and word $_{b}$ appear in.
- Think about $\mathbf{X}^{\top} \mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word ${ }_{a}$ and $w o r d_{b}$.

Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{\top} \mathbf{X}$: where $\left(\mathbf{X}^{\top} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word ${ }_{b}$ appear in.
- Think about $X^{\top} X$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word ${ }_{a}$ and $w^{w} \mathrm{rd}_{\mathrm{b}}$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.

Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{\top} \mathbf{X}$: where $\left(\mathbf{X}^{\top} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word ${ }_{b}$ appear in.
- Think about $\mathbf{X}^{\top} \mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word ${ }_{a}$ and word ${ }_{b}$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing $X^{\top} X$ with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.

Example: Word Embedding

Example: Word Embedding

Note: word2vec is typically described as a neural-network method, but can be viewed as just a low-rank approximation of a specific similarity matrix. Neural word embedding as implicit matrix factorization, Levy and Goldberg.

Non-Linear Dimensionality Reduction

Non-Linear Dimensionality Reduction

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^{d}.)

Non-Linear Dimensionality Reduction

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^{d}.)

A common way of automatically identifying this non-linear structure is to connect data points in a graph. E.g., a -nearest neighbor graph.

- Connect items to similar items, possibly with higher weight edges when they are more similar.

Linear Algebraic Representation of a Graph

Once we have connected n data points x_{1}, \ldots, x_{n} into a graph, we can represent that graph by its (weighted) adjacency matrix.

$$
\underline{A} \in \mathbb{R}^{n \times n} \text { with } A_{i, j}=\text { edge weight between nodes } i \text { and } j
$$

Linear Algebraic Representation of a Graph

Once we have connected n data points x_{1}, \ldots, x_{n} into a graph, we can represent that graph by its (weighted) adjacency matrix.

$$
\mathrm{A} \in \mathbb{R}^{n \times n} \text { with } \mathrm{A}_{i, j}=\text { edge weight between nodes } i \text { and } j
$$

Linear Algebraic Representation of a Graph

Once we have connected n data points x_{1}, \ldots, x_{n} into a graph, we can represent that graph by its (weighted) adjacency matrix.
$A \in \mathbb{R}^{n \times n}$ with $\mathrm{A}_{i, j}=$ edge weight between nodes i and j

Adjacency Matrix Eigenvectors

How do we compute an optimal low-rank approximation of A?

- Project onto the top k eigenvectors of $A^{\top} A=A^{2}$. These are just the eigenvectors of A.

$$
\begin{aligned}
& A x=\lambda x \\
& A^{2} x=A(A x)=A(\lambda x) \\
&=\lambda(\lambda x) \\
& \lambda \cdot \lambda x \quad=\lambda^{2} x \\
&=\lambda^{2} x
\end{aligned}
$$

$$
\overparen{A(\lambda x)}=\lambda \underline{A x}=\lambda \cdot \lambda x \quad=\lambda(\lambda x)
$$

Adjacency Matrix Eigenvectors

$$
\begin{array}{rlrl}
A^{\top} A & =A \cdot A & A^{\top}=A \\
& =A^{2}
\end{array}
$$

How do we compute an optimal low-rank approximation of A?

- Project onto the top k eigenvectors of $A^{\top} A=A^{2}$. These are just the eigenvectors of A .
- $A \approx A V V^{\top}$. The rows of $A V$ can be thought of as 'embeddings' for the vertices.
- Similar vertices (close with regards to graph proximity) should have similar embeddings.

Spectral Embedding

Step 1: Produce a nearest neighbor graph based on your input data in \mathbb{R}^{d}.
Step 2: Apply low-rank approximation to the graph adjacency matrix to produce embeddings in \mathbb{R}^{k}.
Step 3: Work with the data in the embedded space. Where distances represent distances in your original 'non-linear space.'

Spectral Embedding

What other methods do you know for embedding or representing data points with non-linear structure?

Questions?

