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- Problem Set 3 is due Monday at 11:59pm.
- No quiz due Monday.

- I will hold additional office hours on Thursday from
11:30am-12:40pm.



Last Class

- The Singular Value Decomposition (SVD) and its connection to
eigendecomposition of XX and XX" and low-rank
approximation.

This Class: Application of Low-Rank Approximation Beyond
Compression

- Low-rank matrix completion (predicting missing measurements
using low-rank structure).
- Entity embeddings (e.g., word embeddings, node embeddings).

- Low-rank approximation for non-linear dimensionality
reduction, _

- Bgendecomposition 10 parttiom graphs mtoctusters—



SVD Review

N e
- Every X € R"*9 can be written in its SVD as UXV'.
_



SVD Review
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- Every X € R"*9 can be written in its SVD as Uxv’
NI\
- U € R™ (orthonormal) contains the eigenvectors of XX

V € R (orthonormal) contains the eigenvectors of X'X.
¥ ¢ R™" (diagonal) contains their eigenvalues.
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SVD Review
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- Every X € R"*9 canmbe writéen in its SVD as UXV'.

- U e R"™ (orthonormal) contains the eigenvectors of XX'.
V € RY*" (orthonormal) contains the eigenvectors of X'X.
fﬁ . . . .
¥ ¢ R™" (diagonal) contains their eigenvalues.

- UUIX =XV VD = U,Z V) = argmin ||X — B|r.
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Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).



Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.
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Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but

believe is close to rank-k (i.e., well approximated by a rank k matrix).
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Classic example: the Netflix prize problem.

X Movies
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Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies Assume rank(X)=1
5 (| t[1)a
2l 2]
4 2
Users - "



Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies

5 1|4

Users
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Solve: Y= argmin Z X — Bjyf?}z
B st._rank(B)<k '
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Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Y X Movies

_J49]31) 3 |11 38(41(41|34 |46 15 1 4
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1 (333 |22]31]29[32[15|18 1 2
Solve: Y= argmin X p —Biyl’
: J,R J,R

B st. rank(B)<k observed (j,k)



Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Y X Movies
49(31| 3 (113841 |41(34/|46 = 3 3 1 4 4 4 3 5
36| 3 3 (12|38(|42| 5 |34 |48 4 (3|3 1(4|4|5|3|5
28| 3 3 (23| 3 3 3 3 |32 3 3 3 2 3 3 3 3 3
~ Users
34| 3 3 4 (414142 3 3 4 3 3 4 4 4 4 3 3
[ h Ji‘?! 3 (3 3 (3|34 3|3 |3(2(3|3(3[3]3
22| 5 3 4 |42(39|44| 4 |53 2 5 3 4 4 4 4 4 5
1(33) 3 (22(31]29(32(15]|18 1(3(|3(2|3|3(3 1|2
Solve: Y= argmin [X-kf B-k}z
s /s

B st. rank(B)<k

observed (j,R)
Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.




Entity Embeddings

L

Dimensionality reduction embeds d-dimensional vectors into k
dimensions. But what about when you want to embed objects

_—
other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network }
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Entity Embeddings

Dimensionality reduction embeds d-dimensional vectors into k
dimensions. But what about when you want to embed objects
other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Classic Approach: Convert each item into a (very)

high-dimensional feature vector and then apply low-rank
approximation.



Example: Latent Semantic Analysis

Term Document Matrix X
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Example: Latent Semantic Analysis
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Term Document Matrix X
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Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
% ’%/"o&e % %
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doc_nj 1 ofojojofo0|oO 1 1




Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
S %, % L
dc1lofof2|ofo|2]|1|[0]0
1{1|o|1|ofofo|1]o0 -
ofojojofojoOo]|oO 1 1 x *\ ~
doc_nj 1 ofojojofo0|oO 1 1 @‘

If the error ||X — YZT||¢ is small, then on average,
« __—

Xi,a ~ (YZT)i,a - <)7)'aza>'
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Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
% ’%/"o&e % %
dc1lofof2|ofo|2]|1|[0]0
1{1|o|1|ofofo|1]o0 - ~
ofojojofojoOo]|oO 1 1 x ~ Y
doc_nj 1 ofojojofo0|oO 1 1

If the error ||X — YZT||¢ is small, then on average,
Xi,a ~ (YZT)i,a = <)7)'aza>'

l.e., (Vi,Za) = 1 when doc; contains word,.
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Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
% ’%/"o&e % %
dc1lofof2|ofo|2]|1|[0]0
1{1|o|1|ofofo|1]o0 - ~
ofojojofojoOo]|oO 1 1 x ~ Y
doc_nj 1 ofojojofo0|oO 1 1

- If the error ||X — YZT||¢ is small, then on average,
Xi,a ~ (YZT)i,a = <)7)'aza>'

- le, (Vi,Zq) ~ 1 when doc; contains word,.

- If doc; and dog; both contain wordy, (Vi,Za) = (Vj,Za) =~ 1.
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Example: Latent Semantic Analysis

If doc; and doc; both contain wordy, (Vi,Za) = (Vj,Za) =1
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Example: Latent Semantic Analysis

If doc; and doc; both contain wordy, (Vi,Za) = (Vj,Za) =~ 1
_—_’_’/
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Another View: Each column of Y represents a ‘topic’ yi(j) indicates
how much doc; belongs to topic j. Z,(j) indicates how much word,

associates with thattopic.



Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
o e %,
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- Just like with documents, Z, and Z, will tend to have high dot
product if word, and word, appear in many of the same
—_—
documents.



Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
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- Just like with documents, Z, and Z, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set_Z_T: Vi
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Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
o e %,
doc1lo|o|2]o|o0o|1|1]|0]|0
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- Just like with documents, Z, and Z, will tend to have high dot Q
product if word, and word, appear in many of the same

documents. mﬂ}[ L 7

- In an SVD decomposition we set 2" = ZkVT

- The columns of Vj are equivalently: the top k eigenvectors of

T XX
(QA@%Q Claim: ZZ" is the best rank-k approximation of X'X. l.e,, \J 3
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Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear
in.

1



Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear
in.

- Think about X"X as a similarity matrix (gram matrix, kernel
matrix) with entry (a, b) being the similarity between word, and
wordp.
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Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear
in.

- Think about X"X as a similarity matrix (gram matrix, kernel
matrix) with entry (a, b) being the similarity between word, and
wordp.

- Many ways to measure similarity: number of sentences both
occur in, number of times both appear in the same window of w
words, in similar positions of documents in different languages,
etc.
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Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear
in.

- Think about X"X as a similarity matrix (gram matrix, kernel
matrix) with entry (a, b) being the similarity between word, and
wordp.

- Many ways to measure similarity: number of sentences both
occur in, number of times both appear in the same window of w
words, in similar positions of documents in different languages,
etc.

- Replacing X"X with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastText, etc.
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Example: Word Embedding

dog

p Woman ,\ glrl
\ father slow
cat king queen
motheré

\ cats daughter fast
dogs France

8 England

he
Paris Italy \ she long

himself
herself

Londo%

Rome

slower

faster

longer

slowest

fastest

longest
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Example: Word Embedding

woman glrl
slower

man
\\ father slow
cat king queen boy

dog \ mother é faster slowest
\ cats daughter fast
dogs France
England longer
/ / he / fastest
Paris Italy \ sh long
Londor/

himself Jongest

Rome herself

Note: word2vec is typically described as a neural-network
method, but can be viewed as just a low-rank approximation of
a specific similarity matrix. Neural word embedding as implicit
matrix factorization, Levy and Goldberg.

12



Non-Linear Dimensionality Reduction

)

S 0

K N 0
Is this set of points compressible}|Does it lie close to a
ow-dimensional subspacé&g (A 1-dimensional subspace of RY.)
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Non-Linear Dimensionality Reduction

Is this set of points compressible? Does it lie close to a
low-dimensional subspace? (A 1-dimensional subspace of RY.)
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Non-Linear Dimensionality Reduction

Is this set of points compressible? Does it lie close to a
low-dimensional subspace? (A 1-dimensional subspace of R?.)

A common way of automatically identifying this non-linear structure
is to connect data points in a graph. E.g., a ®-nearest neighbor graph.
v

- Connect items to similar items, possibly with higher weight
edges when they are more similar.

13



Linear Algebraic Representation of a Graph

Once we have connected n data points xq,..., X, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A e R™" with Aj; = edge weight between nodes i and j

.
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Linear Algebraic Representation of a Graph

Once we have connected n data points xq,..., X, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A eMth\A,liedge weight between nodes i and j
A

00
11
101
0110
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Linear Algebraic Representation of a Graph

Once we have connected n data points xq,..., X, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A e R™" with Aj; = edge weight between nodes i and j

" A
0100
X4 101 1

X
2 AR
0110

7y . X3
In LSA example, when X is the term-document matrix, X'X is like an
adjacency matrix, where word, and word,, are connected if they
appear in at least 1 document together (edge weight is # documents

they appear in together).
14



Adjacency Matrix Eigenvectors

How do we compute an optimal low-rank approximation of A?

- Project onto the top k eigenvectors of ATA = A%. These are

of A. o

PSR TR Ay s Ay

T _ .

Ax: A2 AG)
R .
AOX) = Mg = A A AR

-\L

A X

2 AN
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Adjacency Matrix Eigenvectors

A - T
AA-AA A=A
How do we canpute an optimal low-rank approximation of A?

- Project onto the top k eigenvectors of ATA = A?. These are
just the eigenvectors of A.

A~ T
A ~ AVV : The rows of AV.can be thought of as \y A

embeddings’ for the vertices.

- Similar vertices (close with regards to graph prOX|m|ty
should have similar embeddings.

n AN
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Step 1: Produce a nearest
neighbor graph based on your
input data in R.

Step 2: Apply low-rank
approximation to the graph
adjacency matrix to produce
embeddings in R¥.

Step 3: Work with the data in the
embedded space. Where
distances represent distances in
your original ‘non-linear space!

Spectral Embedding

16



Spectral Embedding

What other methods do you know
for embedding or representing
data points with non-linear
structure?
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Questions?
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