COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 17

Logistics

- Problem Set 3 is posted. Due Monday 11/14, 11:59pm.
- Quiz this week due Monday at 8pm.

Summary

Last Class: Optimal Low-Rank Approximation

- When data lies close to \mathcal{V}, the optimal embedding in that space is given by projecting onto that space.

$$
X^{X V V^{\top}}=\underset{B \text { with rows in } \mathcal{V}}{\arg \min }\|X-B\|_{F}^{2} .
$$

- Optimal V maximizes $\left\|\mathrm{XVV}^{\top}\right\|_{F}$ and can be found greedily. Equivalently by computing the top k eigenvectors of $X^{\top} X$.

This Class:

- How do we assess the error of this optimal V.
- Connection to the singular value decomposition.

Basic Set Up

Reminder of Set Up: Assume that $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. Let $\mathrm{X} \in \mathbb{R}^{n \times d}$ be the data matrix. d-dimensional space

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathrm{VV}^{\top} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V}.
- $\mathrm{X} \approx \mathrm{X}\left(\mathrm{VV}^{\top}\right)$. Gives the closest approximation to X with rows in \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}=\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \max }\|\mathrm{XV}\|_{F}^{2}=\sum_{j=1}^{k}\left\|\overrightarrow{\mathrm{~V}}_{j}\right\|_{2}^{2}
$$

Solution via eigendecomposition: Letting V_{k} have columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$ corresponding to the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$,

$$
\mathrm{V}_{k}=\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \max }\|\mathrm{XV}\|_{F}^{2}
$$

- Proof via Courant-Fischer and greedy maximization.
- How accurate is this low-rank approximation? Can understand using eigenvalues of $\mathbf{X}^{\top} \mathbf{X}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}:$ orthogonal basis for subspace \mathcal{V}. $\mathrm{V} \in \mathbb{R}^{d \times \mathrm{R}}$: matrix with columns $\overrightarrow{\mathrm{v}}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components). Approximation error is:

$$
\begin{aligned}
\left\|\mathbf{X}-\mathbf{X V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2} & =\|\mathbf{X}\|_{F}^{2} \operatorname{tr}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\left\|\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2} \operatorname{tr}\left(\mathbf{V}_{k}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{V}_{k}\right) \\
& =\sum_{i=1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\sum_{i=1}^{k} \overrightarrow{\mathrm{~V}}_{i}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{V}_{i} \\
& =\sum_{i=1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\sum_{i=1}^{k} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)=\sum_{i=k+1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)
\end{aligned}
$$

- Exercise: For any matrix $\mathrm{A},\|\mathrm{A}\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathrm{A}^{\top} \mathrm{A}\right)$ (sum of diagonal entries = sum eigenvalues).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of $X^{\top} X$ is:

$$
\left\|\mathbf{X}-\mathbf{X V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)
$$

784 dimensional vec

- Choose k to balance accuracy/compression - often at an 'elbow'.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}:$ top

Spectrum Analysis

Plotting the spectrum of $\mathbf{X}^{\top} \mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are to a low-dimensional subspace).

784 dimensional vectors

784 dimensional vectors

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Exercises:

1. Show that the eigenvalues of $X^{\top} X$ are always positive. Hint: Use that $\lambda_{j}=\vec{v}_{j}^{\top} X^{\top} X \vec{v}_{j}$.
2. Show that for symmetric A, the trace is the sum of eigenvalues: $\operatorname{tr}(\mathrm{A})=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~A})$. Hint: First prove the cyclic property of trace, that for any $\mathrm{MN}, \operatorname{tr}(\mathrm{MN})=\operatorname{tr}(\mathrm{NM})$ and then apply this to A's eigendecomposition

Summary

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- Find this subspace via a maximization problem:

$$
\max _{\text {orthonormal } \mathrm{V}}\|\mathrm{XV}\|_{F}^{2} \text {. }
$$

- Greedy solution via eigendecomposition of $X^{\top} X$.
- Columns of V are the top eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.
- Error of best low-rank approximation (compressibility of data) is determined by the tail of $X^{\top} X^{\prime}$ s eigenvalue spectrum.

Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features are correlated.

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

Our compressed dataset is $\mathrm{C}=\mathrm{XV}_{k}$ where the columns of V_{k} are the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.

Observe that $\mathbf{C}^{\top} \mathbf{C}=\boldsymbol{\Lambda}_{k}$
$C^{\top} C$ is diagonal. I.e., all columns are orthogonal to each other, and correlations have been removed. Maximal compression.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing $X^{\top} X$ requires $O\left(n d^{2}\right)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_{1}, \ldots, \vec{v}_{k}$ requires $O\left(d^{3}\right)$ time (similar to the inverse $\left.\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)$.

Many faster iterative and randomized methods. Runtime is roughly õ (ndk) to output just to top k eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

- Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical computation.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathrm{X})=r$ can be written as $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$.

- U has orthonormal columns $\vec{u}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors).
- V has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\boldsymbol{\Sigma}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singular values).
$n \times d$

orthonormal positive diagonal
orthonormal

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix XX^{\top} respectively.

So, letting $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we know that $\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}$ is the best rank- k approximation to X (given by PCA).

What about $\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}$ where $\mathbf{U}_{k} \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_{1}, \ldots, \vec{u}_{k}$? Gives exactly the same approximation!
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{r a n k-k} B \in \mathbb{R}^{n \times d}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}=\mathrm{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{\top}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of U_{k}

Row (data point) compression projections onto 15
784 dimensional vectors dimensional space

Column (feature) compression

	10000* bathrooms $+10^{*}$ (sq.-ft.) \approx list price					
	bedrooms	bathrooms	sq.ft	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	.	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :

$$
X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|\mathrm{X}-\mathrm{B}\|_{F} \text { is given by: }
$$

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}=\mathrm{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X.

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :

$$
X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|\mathrm{X}-\mathrm{B}\|_{F} \text { is given by: }
$$

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}=\mathrm{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X.

