COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2022. Lecture 17

Logistics

- Problem Set 3 is posted. Due Monday 11/14, 11:59pm.
- · Quiz this week due Monday at 8pm.

Summary

Last Class: Optimal Low-Rank Approximation

• When data lies close to \mathcal{V} , the optimal embedding in that space is given by projecting onto that space.

$$\mathbf{XVV}^T = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\text{arg min}} \|\mathbf{X} - \mathbf{B}\|_F^2.$$

• Optimal V maximizes $\|XVV^T\|_F$ and can be found greedily. Equivalently by computing the top k eigenvectors of X^TX .

This Class:

- · How do we assess the error of this optimal V.
- Connection to the singular value decomposition.

3

Basic Set Up

Reminder of Set Up: Assume that $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- $X \approx X(VV^T)$. Gives the closest approximation to X with rows in V.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Low-Rank Approximation via Eigendecomposition

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X} \mathbf{V}\|_F^2 = \sum_{j=1}^R \|\mathbf{X} \vec{\mathbf{V}}_j\|_2^2$$

Solution via eigendecomposition: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of X^TX ,

$$V_k = \mathop{\mathsf{arg\,max}}_{\mathsf{orthonormal}} \|\mathsf{XV}\|_F^2$$

- · Proof via Courant-Fischer and greedy maximization.
- How accurate is this low-rank approximation? Can understand using eigenvalues of X^TX .

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\begin{aligned} \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 &= \|\mathbf{X}\|_F^2 \operatorname{tr}(\mathbf{X}^T \mathbf{X}) - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 \operatorname{tr}(\mathbf{V}_k^T \mathbf{X}^T \mathbf{X} \mathbf{V}_k) \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \vec{\mathbf{V}}_i^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{V}}_i \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \lambda_i (\mathbf{X}^T \mathbf{X}) = \sum_{i=k+1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) \end{aligned}$$

• Exercise: For any matrix A, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T}\|_F^2 = \sum_{i=k+1}^d \lambda_i (\mathbf{X}^\mathsf{T} \mathbf{X})$$

• Choose *k* to balance accuracy/compression – often at an 'elbow'.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top

Plotting the spectrum of X^TX (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Exercises:

- 1. Show that the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are always positive. Hint: Use that $\lambda_j = \vec{v}_i^T\mathbf{X}^T\mathbf{X}\vec{v}_j$.
- 2. Show that for symmetric **A**, the trace is the sum of eigenvalues: $tr(\mathbf{A}) = \sum_{i=1}^n \lambda_i(\mathbf{A})$. Hint: First prove the cyclic property of trace, that for any MN, $tr(\mathbf{MN}) = tr(\mathbf{NM})$ and then apply this to **A**'s eigendecomposition

Summary

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- Find this subspace via a maximization problem:

$$\max_{\text{orthonormal V}} \|\mathbf{XV}\|_F^2.$$

- Greedy solution via eigendecomposition of X^TX .
- Columns of V are the top eigenvectors of X^TX .
- Error of best low-rank approximation (compressibility of data) is determined by the tail of $\mathbf{X}^T\mathbf{X}$'s eigenvalue spectrum.

Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features are correlated.

10000* bathrooms+ 10* (sq. ft.) ≈ list price								
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price		
home 1	2	2	1800	2	200,000	195,000		
home 2	4	2.5	2700	1	300,000	310,000		
•			١.	'				
	•		١.	·	•			
					•			
home n	5	3.5	3600	3	450,000	450,000		

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

Observe that $\mathbf{C}^{\mathsf{T}}\mathbf{C} = \mathbf{\Lambda}_{\mathsf{R}}$

C^TC is diagonal. I.e., all columns are orthogonal to each other, and correlations have been removed. Maximal compression.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing X^TX requires $O(nd^2)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(X^TX)^{-1}$).

Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(ndk)$ to output just to top k eigenvectors $\vec{v}_1, \dots, \vec{v}_k$.

- · Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical computation.

 $\vec{x}_1,\ldots,\vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $X \in \mathbb{R}^{n \times d}$ with rank(X) = r can be written as $X = U \Sigma V^T$.

- **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- V has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$ (singular values).

Connection of the SVD to Eigendecomposition

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\boldsymbol{X}^T\boldsymbol{X} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = \boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T \text{ (the eigendecomposition)}$$

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix X^TX and the gram matrix XX^T respectively.

So, letting $V_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $XV_kV_k^T$ is the best rank-k approximation to X (given by PCA).

What about $\mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$? Gives exactly the same approximation!

 $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\mathbf{\Sigma} \in \mathbb{R}^{\mathrm{rank}(\mathbf{X}) \times \mathrm{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X} .

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:

$$X_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ B \in \mathbb{R}^{n \times d}} \|X - B\|_F$$
 is given by:

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k} \mathbf{U}_{k}^{\mathsf{T}} \mathbf{X} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{\mathsf{T}}$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

Column (feature) compression

10000* bathrooms+ 10* {sq. ft.} \approx list price									
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price			
ome 1	2	2	1800	2	200,000	195,000			
ome 2	4	2.5	2700	1	300,000	310,000			
		•		·					
		•		·					
	•	•	•	٠.					
ome n	5	3.5	3600	3	450,000	450,000			

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to **X**:

$$X_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ B \in \mathbb{R}^{n \times d}} \|X - B\|_F$$
 is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T} = \mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^\mathsf{T}$$

 $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\mathbf{\Sigma} \in \mathbb{R}^{\mathrm{rank}(\mathbf{X}) \times \mathrm{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X} .

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:

$$X_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ B \in \mathbb{R}^{n \times d}} \|X - B\|_F$$
 is given by:

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k} \mathbf{U}_{k}^{\mathsf{T}} \mathbf{X} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{\mathsf{T}}$$

 $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\mathbf{\Sigma} \in \mathbb{R}^{\mathrm{rank}(\mathbf{X}) \times \mathrm{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X} .