COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 17

Logistics

- Problem Set 3 is posted. Due Monday 11/14, 11:59pm.
- Quiz this week due Monday at 8pm.

Summary

Last Class: Optimal Low-Rank Approximation

- When data lies close to \mathcal{V}, the optimal embedding in that space is given by projecting onto that space.

- Optimal V maximizes $\|^{X V V^{\top} \|_{F}}$ and can be found greedily. Equivalently by computing the top k eigenvectors of $X^{\top} X$.

Summary

Last Class: Optimal Low-Rank Approximation

- When data lies close to \mathcal{V}, the optimal embedding in that space is given by projecting onto that space.

$$
\mathbf{X V V}^{\top}=\underset{B \text { with rows in } \mathcal{V}}{\arg \min }\|\mathrm{X}-\mathrm{B}\|_{\mathcal{F}}^{2} .
$$

- Optimal V maximizes $\left\|\mathrm{XVV}^{\top}\right\|_{F}$ and can be found greedily. Equivalently by computing the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.

This Class:

- How do we assess the error of this optimal V.
- Connection to the singular value decomposition.

Basic Set Up

Reminder of Set Up: Assume that $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. Let $X \in \mathbb{R}^{n \times d}$ be the data matrix. d-dimensional space

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{V V}^{\top} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V}.
$\sqrt{\mathrm{X}} \approx \mathrm{X}\left(\mathrm{VV}^{\top}\right)$. Gives the closest approximation to X with rows in \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XV} \mathrm{V}^{\top}\right\|_{F}^{2}$ is given by:

$$
\left\|X V V^{T}\right\|_{F}^{2}=\|X V\|_{F}^{2}
$$

$$
\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}=\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times N} \times \underbrace{\arg \max }\|\mathrm{XV}\|_{F}^{2}}{\text { or }}\left\|\sum_{j=1}^{k}\right\| \overrightarrow{\mathrm{V}}_{j} \|_{2}^{2}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogohal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}=\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \max }\|\mathrm{XV}\|_{F}^{2}=\sum_{j=1}^{k}\left\|\mathrm{X} \overrightarrow{\mathrm{~V}}_{j}\right\|_{2}^{2}
$$

Solution via eigendecomposition: Letting V_{k} have columns $\vec{v}_{1}, \ldots, \vec{V}_{k}$ corresponding to the top k eigenvectors of $X^{\top} X$,

$$
\mathrm{V}_{k}=\underset{\text { arg max }}{\arg \max }\|\mathrm{XV}\|_{F}^{2}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-
nal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\left\|X-X V V^{\top}\right\|_{F}^{2}=\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \max }\|\mathrm{XV}\|_{F}^{2}=\sum_{j=1}^{k}\left\|X \overrightarrow{\mathrm{~V}}_{j}\right\|_{2}^{2}
$$

Solution via eigendecomposition: Letting V_{k} have columns $\vec{v}_{1}, \ldots, \vec{V}_{k}$ corresponding to the top k eigenvectors of $X^{\top} X$,

$$
\mathrm{V}_{k}=\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \max }\|\mathrm{XV}\|_{F}^{2}
$$

- Proof via Courant-Fischer and greedy maximization.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\left\|X-X V V^{\top}\right\|_{F}^{2}=\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \max }\|\mathrm{XV}\|_{F}^{2}=\sum_{j=1}^{k}\left\|X \overrightarrow{\mathrm{~V}}_{j}\right\|_{2}^{2}
$$

Solution via eigendecomposition: Letting V_{k} have columns $\vec{v}_{1}, \ldots, \vec{V}_{k}$ corresponding to the top k eigenvectors of $X^{\top} X$,

$$
\mathrm{V}_{k}=\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \max }\|\mathrm{XV}\|_{F}^{2}
$$

- Proof via Courant-Fischer and greedy maximization.

How accurate is this low-rank approximation? Can understand using eigenvalues of $X^{\top} X$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times{ }^{k}}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $X^{\top} X$ (the top k principal components). Approximation error is:

$$
\left\|\mathrm{X}-\mathrm{XV}_{\underline{\mathrm{V}}} \mathrm{~V}_{\mathrm{R}}^{\top}\right\|_{F}^{2}
$$

$$
\left[v_{1} \ldots v_{k}\right]
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components). Approximation error is:

$$
\left\|\mathrm{X}-\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}\right\|_{F}^{2}=\|\mathrm{X}\|_{F}^{2}-\left\|\mathrm{XV}_{k} \mathrm{~V}_{k}^{T}\right\|_{F}^{2}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components). Approximation error is:

$$
\left\|\mathrm{X}-\mathrm{XV} \mathrm{~V}_{k} \mathrm{~V}_{k}^{\top}\right\|_{F}^{2}=\|\mathrm{X}\|_{F}^{2}-\left\|\mathrm{XV}_{k}\right\|_{F}^{2}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components). Approximation error is:

$$
\left\|\mathrm{X}-\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}\right\|_{F}^{2}=\|\mathrm{X}\|_{F}^{2}-\left\|\mathrm{XV}_{k}\right\|_{F}^{2}
$$

$\|y\|_{2}^{2}=\langle y, y\rangle=y^{\top} y$

- Exercise: For any matrix $\overline{\mathrm{A},\|\mathrm{A}\|_{F}^{2}}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathrm{A}^{\top} \mathrm{A}\right)$ (sumtof diagonat entries = sumा eigeो
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\overrightarrow{1}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components). Approximation error is:

$$
\left\|\mathrm{X}-\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}\right\|_{F}^{2}=\operatorname{tr}\left(\mathrm{X}^{\top} \mathrm{X}\right)-\operatorname{tr}\left(\mathrm{V}_{k}^{\top} \mathrm{X}^{\top} \mathrm{X} \mathrm{~V}_{k}\right)
$$

- Exercise: For any matrix $\mathrm{A},\|\mathrm{A}\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathrm{A}^{\top} \mathrm{A}\right)$ (sum of didgonat entries = sum eigenvalues).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis
Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $X^{\top} X$ (the top k principal
components). Approximation error is:

$$
\begin{aligned}
& =\sum_{i=1}^{d} \lambda_{i}\left(X^{\top} X\right)-\sum_{i=1}^{k} \underbrace{\left.\vec{v}^{\top} X^{\top} X \vec{v}_{i}^{\top} X\right)}_{\lambda_{i}^{N}} V_{i} \quad V_{i}^{\top} X^{\top} X V_{i} \\
& {\left[v_{i}^{\top}\right]\left[\begin{array}{l}
d x \mid \\
\lambda_{i} v_{i}
\end{array}\right]} \\
& \underbrace{V_{i}^{\top} \lambda_{i}^{\prime}\left(x^{\top} x\right)^{0} V_{i}}_{V_{i}^{\prime \prime}} \\
& \lambda_{i}\left(x^{\prime \prime} x\right) \cdot v_{i}^{\top} v_{i}=\lambda_{i}\left(x^{\top} x\right)
\end{aligned}
$$

$\begin{aligned} \rightarrow & \left.\text { Exercise: For any matrix } A,\|A\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathrm{A}^{\top} \mathrm{A}\right)\right) \sqrt{(\text { sum of }} \\ & \text { diagonal entries }=\text { sum eigenvalues }) .\end{aligned}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{\top} \mathrm{X}, \mathrm{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{\mathrm{V}}_{1}, \ldots, \vec{V}_{k}$.

Spectrum Analysis

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components). Approximation error is:

$$
\begin{aligned}
&\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2}=\operatorname{tr}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\operatorname{tr}\left(\mathbf{V}_{k}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{V}_{k}\right) \\
&=\sum_{i=1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\sum_{i=1}^{k} \vec{v}_{i}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{V}_{i} \\
&=\sum_{\|=1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\sum_{i=1}^{k} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right) \\
&\|\mathbf{X}\|_{\mathbb{F}}^{2}
\end{aligned}
$$

- Exercise: For any matrix $\mathrm{A},\|\mathrm{A}\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathrm{A}^{\top} \mathrm{A}\right)$ (sum of diagonal entries = sum eigenvalues).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $X^{\top} \mathbf{X}$ (the top k principal components). Approximation error is: $V_{k}=\arg \min \left\|X-X V V^{\top}\right\|_{F}^{2}$

$$
\frac{x}{\pi}
$$

- Exercise: For any matrix $\mathrm{A},\|\mathrm{A}\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathrm{A}^{\top} \mathrm{A}\right)$ (sum of diagonal entries = sum eigenvalues).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

$$
\begin{aligned}
& \left\|X-X V_{k} V_{k}^{\top}\right\|_{F}^{2}=\operatorname{tr}\left(X^{\top} X\right)-\operatorname{tr}\left(V_{k}^{\top} X^{\top} X V_{k}\right) \\
& \begin{array}{l}
=\sum_{i=1}^{d} \lambda_{i}\left(\mathrm{X}^{\top} \mathrm{X}\right)-\sum_{i=1}^{k} \vec{v}_{i}^{\top} \mathrm{X}^{\top} \mathrm{X} \vec{V}_{i} \\
=\sum_{i=1}^{d} \underbrace{\lambda_{i}\left(\mathrm{X}^{\top} \mathrm{X}\right.} \mathrm{V}^{\top})-\sum_{i=1}^{k} \lambda_{i}\left(\mathrm{X}^{\top} \mathrm{X}\right)=\sum_{i=k+2}^{d} \lambda_{i}\left(\mathrm{X}^{\top} \mathrm{X}\right) \\
\text { the } i^{\text {th }} \text { eijanal of } \mathrm{X}^{\top} \mathrm{X} .
\end{array} \\
& \begin{array}{l}
=\sum_{i=1}^{d} \lambda_{i}\left(\mathrm{X}^{\top} \mathrm{X}\right)-\sum_{i=1}^{k} \vec{v}_{i}^{\top} \mathrm{X}^{\top} \mathrm{X} \vec{V}_{i} \\
=\sum_{i=1}^{d} \underbrace{\lambda_{i}\left(\mathrm{X}^{\top} \mathrm{X}\right.} \mathrm{V}^{\top})-\sum_{i=1}^{k} \lambda_{i}\left(\mathrm{X}^{\top} \mathrm{X}\right)=\sum_{i=k+2}^{d} \lambda_{i}\left(\mathrm{X}^{\top} \mathrm{X}\right) \\
\text { the } i^{\text {th }} \text { eijanal of } \mathrm{X}^{\top} \mathrm{X} .
\end{array}
\end{aligned}
$$

Spectrum Analysis

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of $X^{\top} X$ is:

$$
\left\|\mathrm{X}-\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}\right\|_{F}^{2}=\underline{\sum_{i=k+1}^{d} \lambda_{i}\left(\mathrm{X}^{\top} \mathrm{X}\right)}
$$

Spectrum Analysis

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of $X^{\top} X$ is:

$$
\left\|\mathbf{X}-\mathbf{X V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{x} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}:$ top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of $X^{\top} X$ is:

$$
\left\|\mathbf{X}-\mathbf{X V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)
$$

784 dimensional vectors

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of $X^{\top} X$ is:

$$
\left\|\mathrm{X}-\mathrm{XV}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{V}_{1}, \ldots, \vec{V}_{k}$.

Spectrum Analysis

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ is:

$$
\left\|\mathbf{X}-\mathbf{X V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)
$$

784 dimensional vectors

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{V}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of $X^{\top} X$ is:

$$
\left\|\mathbf{X}-\mathbf{X V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)
$$

784 dimensional vectors

- Choose k to balance accuracy/compression - often at an 'elbow'.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}:$ data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top
eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}:$ matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Plotting the spectrum of $\mathbf{X}^{\top} \mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are to a low-dimensional subspace).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{x} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{R} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Plotting the spectrum of $\mathbf{X}^{\top} X$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are to a low-dimensional subspace).

784 dimensional vectors

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Plotting the spectrum of $\mathbf{X}^{\top} \mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are to a low-dimensional subspace).

784 dimensional vectors

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Plotting the spectrum of $X^{\top} X$ (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are to a low-dimensional subspace).

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Exercises:

1. Show that the eigenvalues of $X^{\top} X$ are always positive. Hint: Use that $\lambda_{j}=\vec{v}_{j}^{\top} X^{\top} X \vec{v}_{j}$.
2. Show that for symmetric A, the trace is the sum of éigenvalues: $\operatorname{tr}(\mathrm{A})=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~A})$. Hint: First prove the cyclic property of trace, that for any $\mathrm{MN}, \operatorname{tr}(M N)=\operatorname{tr}(\mathrm{NM})$ and then apply this to A's eigendecomposition

$$
n \in \mathbb{R}^{n \times 2} \quad N^{d \times n}
$$

Summary

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- Find this subspace via a maximization problem:

$$
\max _{\substack{\text { orthonormal. } \\ V \in \mathbb{R}^{d \times k}}}\|\mathrm{XV}\|_{F}^{2} .
$$

- Greedy solution via eigendecomposition of $\mathbf{X}^{\top} \mathbf{X}$.
- Columns of V are the top eigenvectors of $X^{\top} X$.
- Error of best low-rank approximation (compressibility of data) is determined by the tail of $X^{\top} X^{\prime}$ s eigenvalue spectrum.

Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features are correlated.

10000* bathrooms+ 10* (sq. ft.) \approx list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features are correlated.

	10000* bathrooms+ 10* (sq. ft.) \% list price					
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

Our compressed dataset is $\mathbf{C}=\mathrm{XV}_{k}$ where the columns of V_{k} are the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features are correlated.

	10000* bathrooms+ 10* (sq. ft.) \% list price					
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

Our compressed dataset is $\mathbf{C}=\mathrm{XV}_{k}$ where the columns of V_{k} are the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.

Observe that $\mathrm{C}^{\top} \mathrm{C}=$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features are correlated.

Observe that $\mathbf{C}^{\top} \mathbf{C}=\boldsymbol{\Lambda}_{k}$
$C^{\top} C$ is diagonal. I.e., all columns are orthogonal to each other, and correlations have been removed. Maximal compression.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{x} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing $X^{\top} X$ requires $O\left(n d^{2}\right)$ time. $d\left[x_{n}^{\top}\right]_{x}^{d}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{x} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{R} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing $X^{\top} X$ requires $O\left(n d^{2}\right)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_{1}, \ldots, \vec{v}_{k}$ requires $O\left(d^{3}\right)$ time (similar to the inverse $\left.\left(X^{\top} X\right)^{-1}\right)$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing $X^{\top} X$ requires $O\left(n d^{2}\right)$ time.

- Computing its full eigendecomposition to obtain $\vec{v}_{1}, \ldots, \vec{v}_{k}$ requires $O\left(d^{3}\right)$ time (similar to the inverse $\left.\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)$.
$\int_{\tilde{O}}$ Many faster iterative and randomized methods. Runtime is roughly O$(n d k)$ to output just to top k eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$.
$k \ll$. Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{x} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}:$ top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices.

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \underline{\mathbb{R}^{n \times d}}$ with $\operatorname{rank}(\mathbf{X})=r$ can be written as $\underline{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$.

- U has orthonormal columns $\vec{u}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors).
- V has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\underline{\boldsymbol{\Sigma}}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singular values).

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathrm{X})=r$ can be written as $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$.

- U has orthonormal columns $\vec{n}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors). $\bigcup^{n \times r} \sum^{x r} V^{T c}-$
- V has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\boldsymbol{\Sigma}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singular values). $\quad \cup \in \mathbb{R}^{n \times r}$
$\mathrm{n} \times \mathrm{d}$

positive diagonal
orthonormal

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\underbrace{\operatorname{rank}(X)=r}$ can be written as $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma}^{\boldsymbol{T}}$.

- U has orthonormal columns $\vec{u}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors).
- V has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\boldsymbol{\Sigma}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singular values).
$\mathrm{n} \times \mathrm{d}$

Connection of the SVD to Eigendecomposition
Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\begin{aligned}
& \underbrace{X^{\top} X=V \Sigma U^{\top} / U \Sigma V^{\top}}_{2}=\underbrace{\sum^{2} i g u n d u s e}_{\substack{\text { eigerectors } \\
V^{2} V^{\top}}} \\
& \sigma_{i}(x)^{2}=\lambda_{i}\left(x^{\top} x\right)
\end{aligned}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathrm{X}^{\top} \mathrm{X}=\mathrm{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathrm{V}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma}^{\top}$:

$$
\mathrm{X}^{\top} \mathrm{X}=\mathrm{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} U \boldsymbol{\Sigma} \mathrm{~V}^{\top}=\mathrm{V} \boldsymbol{\Sigma}^{2} \mathrm{~V}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{V}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma}^{\top}$:

$$
\underline{\mathbf{X}^{\top} \mathbf{X}}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\underline{\mathbf{V}} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $X_{n \times n}^{\top}=\frac{U \boldsymbol{\Sigma} \mathbf{V}^{\top} V \boldsymbol{\Sigma} U^{\top}}{X}=\boldsymbol{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{V}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $X \in \mathbb{R}^{\prime} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
X^{\top} X=V \boldsymbol{\Sigma} U^{\top} U \boldsymbol{\Sigma} V^{\top}=\boldsymbol{V}^{2} V^{\top} \text { (the eigendecomposition) }
$$

Similarly: $X^{\text {right }}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} V \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \underline{\Sigma}^{2} \mathbf{U}^{\top}$.

$$
\left[v_{i}^{T}\right]\left\{\begin{array}{l}
i,\left[N_{i}\right. \\
x
\end{array}\right]
$$

Theultyand vigkte singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix XX^{\top} respectively.

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X} \mathbf{X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix XX^{\top} respectively.

So, letting $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we know that $\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}$ is the best rank- k approximation to X (given by PCA).
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X} \mathbf{X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the $X^{\top} U_{k} U_{k}^{\top}$ covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix XX^{\top} respectively.
So, letting $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we know $\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}$ is the best rank -k approximation to X (given by PCA).
What rout $U_{v_{k}} U_{b}^{T} X$ where $U_{k} \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_{1}, \ldots, \vec{u}_{k}$?

$$
V_{k} U_{k}^{\top} x=x V_{k} V_{k}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times r a n k(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times r a n k}(\mathrm{X})$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\text {rank (X) } \times \text { rank }(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X} \mathbf{X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix XX^{\top} respectively.

So, letting $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we know that $\mathrm{XV}_{k} \mathrm{~V}_{k}^{T}$ is the best rank-k approximation to X (given by PCA).

What about $U_{k} \mathbf{U}_{k}^{\top} \mathbf{X}$ where $\mathbf{U}_{k} \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_{1}, \ldots, \vec{u}_{k}$? Gives exactly the same approximation!
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X .

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\underline{X V}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of U_{k}

Row (data point) compression

Column (feature) compression

	10000* bathrooms+ 10**(sq.f.t.) \sim list price					
	bedrooms	bathrooms	sq.ft	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
.	-	-	.	.	-	.
.	-	-	-	.	-	-
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of U_{k}

$$
r=d
$$

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\underline{\underline{\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}}=\mathrm{U}_{\mathrm{k}} \Sigma_{k} V_{k}^{\top}, ~}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of \mathbf{U}_{k}

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}=\mathrm{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{\top}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of U_{k}

$$
\mathrm{n} \times \mathrm{d} \text { (rank-k) orthonormal positive diagonal orthonormal }
$$

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|\underline{X}-B\|_{F}$ is given by:

$$
\begin{aligned}
& \mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}=\mathrm{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{\top}
\end{aligned}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k} B \in \mathbb{R}^{n \times d}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}=\mathrm{U}_{k} \Sigma_{k} \mathrm{~V}_{k}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X.

