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Last Class:
- No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V € R?*® for that subspace.

- View as low-rank matrix factorization. Introduce concept of
low-rank approximation.

- ldea of approximating a data matrix X with X¥V" when the data
points lie close to the subspace spanned by V's columns.

- ‘Dual view’ of low-rank approximation: data points that can be
approximately reconstructed from a few basis vectors vs.
linearly dependent features.

This Class:

- How to find an optimal orthogonal basis V € R?** to minimize
X = X2



Low-Rank Factorizatoin

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R4k the data matrix can be written as

X = XW' (Implies rank(X) < k)

- W/ is a projection matrix, which projects the rows of X (the data
points X, ..., X, onto the subspace V.

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., V, € R%: orthogo-
nal basis for subspace V. V e R9%k: matrix with columns ¥4, .. . , V. 3




Low-Rank Approximation

Claim: If X;, ..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9*® the data matrix can be approximated as:

X ~ XWW'

d-dimensional space

k-dim. subspace V

XWT has rank k. It is a low-rank approximation of X.
XW' = argmin X =Bz =) (X —Bj)".

B with rows in Vv i

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € RY: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V.




Properties of Projection Matrices

Quick Exercise 1: Show that W' is idempotent. l.e,,
(W) (WT)y = (WT)y for any y € RY.

Quick Exercise 2: Show that W'(I — W) = 0 ( the projection is
orthogonal to its complement).



Pythagorean Theorem

Pythagorean Theorem: For any orthonormal V € RY*% and any
yeRr,
1715 = W + (1Y — (W3-



Best Fit Subspace

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € R¥** the data matrix can be approximated as

XVWV'. XV gives optimal embedding of X in V.
How do we find V (equivilantly V)?

argmin X = XWT[I2 =" (X;; — (XWT);)? an,fvv X3 ar

orthonormal VERAxk i orthono

d-dimensional space

k-dim. subspace V

X1,...,%n € R%: data points, X € R"*9: data matrix, V4, ..., V, € R% orthogo-
nal basis for subspace V. V e R9*k: matrix with columns V4, .. ., V. ;




Solution via Eigendecomposition

V minimizing ||X — XV is given by:

n 3
argmax [XV[Z= 3" IVEIE = S X3
orthonormal VERYXF i—1 j=1

Surprisingly, can find the columns of V, Vi, ..., V,, greedily.

Vi = argmax ||XV||2VX'XV.
v with ||v]|.=1

V) = arg max VIXTXV.
7with [[Vl=1, (7,7)=0
Vi = arg max VIXTXV.

7with [[v]l,=1, (7,7,)=0 Vj<k

.,V € R%: orthogo-

X,..., % € R%: data points, X € R"*9: data matrix, v, . .
T

nal basis for subspace V. V e R9%k: matrix with columns ¥, .




Review of Eigenvectors and Eigendecomposition

Eigenvector: X € RY is an eigenvector of a matrix A € R9x9 if
AX = XX for some scalar X (the eigenvalue corresponding to X).

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
Vi,...,Vq. Let V e R9%9 have these vectors as columns.

[ N | | |
AV = [AV; Al -+ AVg| = | MV A --- Aig| =VA

Yields eigendecomposition: AW’ = A = VAV,



Review of Eigenvectors and Eigendecomposition

dxd orthonormal diagonal orthonormal

A
22

A = \ A \

Aa-1
Aa

Typically order the eigenvectors in decreasing order:
M> N> > A\
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Low-Rank Approximation via Eigendecomposition

dxd

XX =% 5|V A A

6 d-dimensional space

k-dim. subspace V

n



Low-Rank Approximation via Eigendecomposition

Upshot: Letting V|, have columns i, ...,V corresponding to
the top k eigenvectors of the covariance matrix X'X, Vy, is the
orthogonal basis minimizing

IX — XV, VI,

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of X'X.

eigenvectors of XX, V,, € RY>k: matrix with columns ¥4, ..., V.

X1,..., % € RY data points, X € R">9: data matrix, v1,...,¥, € R top ]
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Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

- Exercise: For any matrix A,

[IX = XViVEIIE = X[ tr(XTX) — [IXVEVE[I7 tr(VEXTXV)
d R
=D A(XTX) =) VXX,
i=1 =1

d k d
=S = YA = S A (xXx)

I=R+1

All2 = 1L, [1Gi]13 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

|

X1,...,%n € R data points, X € R"™ % data matrix, V4,...,V, € R% top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.
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Spectrum Analysis

Claim: The error in approximating X with the best rank k

approximation (projecting onto the top k eigenvectors of X'X) is:

dxd

d
IX = XVRVEIE = D A(X'X)

I=R+1

XX

A2

VT

error of optimal low rank
approximation

784 dimensional vec

G

- Choose k to balance accuracy/compression - often at an ‘elbow’.

[ Xi1,...,% € RY: data points, X € R"%%: data matrix, v, .

At Are ~EVTIVY A7~ AXR. mmatriv it o~Al e O =

eige

..,Vx € R% top ] 14



Spectrum Analysis

Plotting the spectrum of XX (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
Xi1,...,X, are to a low-dimensional subspace).

784 dimensional vectors 784 dimensional vectors

eigendecomposition
? Eigenvalue Rank

X,...,% € RY data points, X € R">9: data matrix, v4,...,¥%, € R top
eigenvectors of X'X, Vi, € RY*k: matrix with columns V4, . .. , V.

Eigenvalue
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Spectrum Analysis

784 dimensional vectors

eigendecomposition

Eigenvalue Rank

SNERE

Exercises:

1. Show that the eigenvalues of X'X are always positive. Hint: Use
that A; = VXXV,

2. Show that for symmetric A, the trace is the sum of eigenvalues:
tr(A) = >°7. Ai(A). Hint: First prove the cyclic property of trace,
that for any MN, tr(MN) = tr(NM) and then apply this to A’s
eigendecomposition.



- Many (most) datasets can be approximated via projection
onto a low-dimensional subspace.

- Find this subspace via a maximization problem:

max  ||XV||2
orthonormal V

- Greedy solution via eigendecomposition of X'X.
- Columns of V are the top eigenvectors of X'X.

- Error of best low-rank approximation (compressibility of
data) is determined by the tail of X'Xs eigenvalue
spectrum.



Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features
are correlated. SaAE

floors| sale price
home 1 2 2 195,000
home 2 a4 1 310,000
homen 5 3 450,000

Our compressed dataset is C = XV, where the columns of V,, are the
top k eigenvectors of X'X.

Observe that C'C = A,

C'Cis diagonal. l.e, all columns are orthogonal to each other, and
correlations have been removed. Maximal compression.

X,...,%: € RY data points, X € R"*9: data matrix, v4,...,¥%, € R top
eigenvectors of XTX, Vi, € R9%F: matrix with columns v, . . ., V.




Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing X'X requires O(nd”) time.
- Computing its full eigendecomposition to obtain vy,...,V,
requires O(d®) time (similar to the inverse (XX)~").

Many faster iterative and randomized methods. Runtime is
roughly O(ndk) to output just to top k eigenvectors vi, . . ., V.

- Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in
numerical computation.

Xi,...,%X € RY data points, X € R">9: data matrix, v4,...,v, € R top
eigenvectors of XX, V, € RY>k: matrix with columns V4, ..., V.
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