COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2022. Lecture 16

Summary

Last Class:

- No-distortion embeddings for data lying in a k-dimensional subspace via an orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$ for that subspace.
- View as low-rank matrix factorization. Introduce concept of low-rank approximation.
- Idea of approximating a data matrix **X** with **XVV**^T when the data points lie close to the subspace spanned by **V**'s columns.
- 'Dual view' of low-rank approximation: data points that can be approximately reconstructed from a few basis vectors vs. linearly dependent features.

This Class:

• How to find an optimal orthogonal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$ to minimize $\|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2$.

Low-Rank Factorizatoin

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
 (Implies rank(X) $\leq k$)

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace V.

d-dimensional space v_1 v_2 k-dim. subspace v

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Low-Rank Approximation

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T$$

 XVV^T has rank k. It is a low-rank approximation of X.

$$\mathbf{XVV^T} = \mathop{\arg\min}_{\mathbf{B} \text{ with rows in } \mathcal{V}} \|\mathbf{X} - \mathbf{B}\|_{\mathit{F}}^2 = \sum_{i,j} (\mathbf{X}_{i,j} - \mathbf{B}_{i,j})^2.$$

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

Properties of Projection Matrices

Quick Exercise 1: Show that VV^T is idempotent. I.e., $(VV^T)(VV^T)\vec{y} = (VV^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Quick Exercise 2: Show that $VV^T(I - VV^T) = 0$ (the projection is orthogonal to its complement).

5

Pythagorean Theorem

Pythagorean Theorem: For any orthonormal $V \in \mathbb{R}^{d \times k}$ and any $\vec{y} \in \mathbb{R}^d$,

$$\|\vec{y}\|_{2}^{2} = \|(\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2} + \|\vec{y} - (\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2}.$$

Best Fit Subspace

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (equivilantly V)?

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T}\|_F^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^\mathsf{T} \vec{x}_i\|_2^2 \underset{\text{orthonormal orthonormal V}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T}\|_F^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^\mathsf{T} \vec{x}_i\|_2^2 \underset{\text{orthonormal orthonormal V}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T}\|_F^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^\mathsf{T} \vec{x}_i\|_2^2 \underset{\text{orthonormal orthonormal V}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T}\|_2^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^\mathsf{T} \vec{x}_i\|_2^2 \underset{\text{orthonormal orthonormal V}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T}\|_2^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T})_{i,j})^2 = \sum_{i=1}^n \|\mathbf{X}_{i,j} - \mathbf{V} \mathbf{V}^\mathsf{T} \vec{x}_i\|_2^2 \underset{\text{orthonormal V}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T}\|_2^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T})_{i,j})^2 = \sum_{i=1}^n \|\mathbf{X}_{i,j} - \mathbf{V} \mathbf{V}^\mathsf{T} \vec{x}_i\|_2^2 \underset{\text{orthonormal V}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T}\|_2^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T})_{i,j})^2 = \sum_{i=1}^n \|\mathbf{X}_{i,j} - \mathbf{V} \mathbf{V}^\mathsf{T} \mathbf{V}^\mathsf{T}\|_2^2 = \sum_{i=1}^n \|\mathbf{X}_{i,i} - \mathbf{V} \mathbf{V}^\mathsf{T}\|_2^2 = \sum_{i=1}^n \|\mathbf{X}_{i,i} - \mathbf{V}^\mathsf{T}\|_2^2 = \sum_{i=1}^n \|$$

d-dimensional space v_1 v_2 v_2 v_3 v_4 v_4 v_5 v_6 v_7 v_8 $v_$

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Solution via Eigendecomposition

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{i=1}^n \|\mathbf{V}^\mathsf{T}\vec{x}_i\|_2^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{V}}_j\|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\begin{split} \vec{v}_1 &= \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \|\mathbf{X} \vec{v}\|_2^2 \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}. \\ \vec{v}_2 &= \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}. \end{split}$$

$$\vec{\mathsf{V}}_k = \underset{\vec{\mathsf{V}} \text{ with } \|\mathsf{V}\|_2 = 1, \ \langle \vec{\mathsf{V}}, \vec{\mathsf{V}}_i \rangle = 0 \ \forall j < k}{\mathsf{arg max}} \vec{\mathsf{V}}^\mathsf{T} \mathbf{X} \vec{\mathsf{V}}.$$

 $\vec{v}_1, \dots, \vec{v}_k$ are the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ by the Courant-Fischer Principle.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Review of Eigenvectors and Eigendecomposition

Eigenvector: $\vec{x} \in \mathbb{R}^d$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A}\vec{x} = \lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, A just 'stretches' x.
- If **A** is symmetric, can find *d* orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{\mathbf{v}}_1 & \mathbf{A}\vec{\mathbf{v}}_2 & \cdots & \mathbf{A}\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{\mathbf{v}}_1 & \lambda_2\vec{\mathbf{v}}_2 & \cdots & \lambda\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \mathbf{V}\boldsymbol{\Lambda}$$

Yields eigendecomposition: $AVV^T = A = V\Lambda V^T$.

Review of Eigenvectors and Eigendecomposition

Typically order the eigenvectors in decreasing order: $\lambda_1 > \lambda_2 > ... > \lambda_d$.

Low-Rank Approximation via Eigendecomposition

Low-Rank Approximation via Eigendecomposition

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$$

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand using eigenvalues of **X**^T**X**.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\begin{split} \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 &= \|\mathbf{X}\|_F^2 \operatorname{tr}(\mathbf{X}^T \mathbf{X}) - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 \operatorname{tr}(\mathbf{V}_k^T \mathbf{X}^T \mathbf{X} \mathbf{V}_k) \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \vec{\mathbf{V}}_i^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{V}}_i \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \lambda_i (\mathbf{X}^T \mathbf{X}) = \sum_{i=k+1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) \end{split}$$

• Exercise: For any matrix A, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$) is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

• Choose *k* to balance accuracy/compression – often at an 'elbow'.

 $\vec{X}_1, \dots, \vec{X}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{V}_1, \dots, \vec{V}_k \in \mathbb{R}^d$: top

Plotting the spectrum of X^TX (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Exercises:

- 1. Show that the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are always positive. Hint: Use that $\lambda_j = \vec{\mathbf{v}}_i^T\mathbf{X}^T\mathbf{X}\vec{\mathbf{v}}_j$.
- 2. Show that for symmetric **A**, the trace is the sum of eigenvalues: $tr(A) = \sum_{i=1}^{n} \lambda_i(A)$. Hint: First prove the cyclic property of trace, that for any MN, tr(MN) = tr(NM) and then apply this to **A**'s eigendecomposition.

Summary

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- Find this subspace via a maximization problem:

$$\max_{\text{orthonormal V}} \|\mathbf{XV}\|_F^2.$$

- Greedy solution via eigendecomposition of X^TX .
- Columns of V are the top eigenvectors of X^TX .
- Error of best low-rank approximation (compressibility of data) is determined by the tail of X^TX's eigenvalue spectrum.

Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features are correlated.

10000* bathrooms+ 10* (sq. ft.) ≈ list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•	•		٠.	١ .	•	
	•		•	·	•	
	•				•	•
home n	5	3.5	3600	3	450,000	450,000

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

Observe that $\mathbf{C}^{\mathsf{T}}\mathbf{C} = \mathbf{\Lambda}_{\mathsf{R}}$

C^TC is diagonal. I.e., all columns are orthogonal to each other, and correlations have been removed. Maximal compression.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing X^TX requires $O(nd^2)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(X^TX)^{-1}$).

Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(ndk)$ to output just to top k eigenvectors $\vec{v}_1, \dots, \vec{v}_k$.

- · Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical computation.

 $\vec{X}_1,\ldots,\vec{X}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.