COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2022. Lecture 15

- Midterms should be graded by end of the week.
- Will release grades once we are done and hand them back in class next week.
- Quiz due Monday 8pm as usual this week.

Summary

Last Few Classes:

The Johnson-Lindenstrauss Lemma

- Reduce *n* data points in any dimension *d* to $O\left(\frac{\log n/\delta}{\epsilon^2}\right)$ dimensions and preserve (with probability $\geq 1 \delta$) all pairwise distances up to $1 \pm \epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)

High-Dimensional Geometry

- Why high-dimensional space is so different than low-dimensional space.
- How the JL Lemma can still work, and why it is optimal.

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce *d*-dimesional data points to a smaller dimension *m*.
- Like JL, compression is linear by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- Can give better compression than random projection (although not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis, column/row span, eigenvectors, etc.

Embedding with Assumptions

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any *k*-dimensional subspace $\mathcal{V} \text{ of } \mathbb{R}^d$. d-dimensional space d-dimensional space v_1 v_2 v_2 v_1 v_2 v_3 k-dim. subspace \mathcal{V}

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_i :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

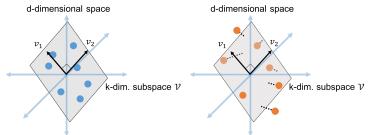
• $\mathbf{V}^{\mathsf{T}} \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_1, \ldots, \vec{x}_n$ into k dimensions with no distortion.

Dot Product Transformation

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_i, \vec{x}_j \in \mathcal{V}$: $\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_i\|_2 = \|\vec{x}_i - \vec{x}_i\|_2.$

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find ${\mathcal V}$ and V?
- How good is the embedding?

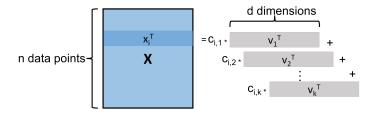
Low-Rank Factorization

Claim: $\vec{x_1}, \dots, \vec{x_n}$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

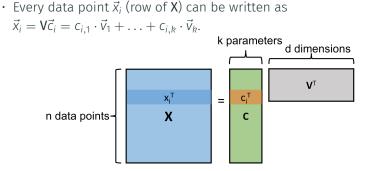
• Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write \vec{x}_i as:

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + c_{i,2}\cdot\vec{v}_2 + \ldots + c_{i,k}\cdot\vec{v}_k.$$

• So $\vec{v}_1, \ldots, \vec{v}_k$ span the rows of **X** and thus $rank(\mathbf{X}) \leq k$.



Claim: $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

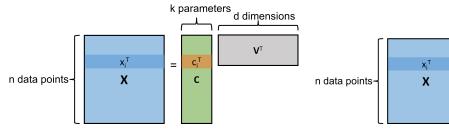


- X can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of $V \implies$ the columns of X are spanned by k vectors: the columns of C.

 $\vec{x}_1, \ldots, \vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Low-Rank Factorization

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.



Exercise: What is this coefficient matrix **C**? Hint: Use that $V^T V = I$.

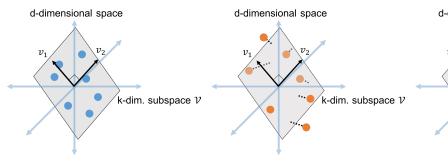
$$\cdot X = CV^T \implies XV = CV^TV \implies XV = C$$

Projection View

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{C}\mathbf{V}^T\mathbf{X}\mathbf{V}\mathbf{V}^T.$

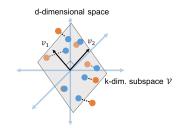
• WV^T is a projection matrix, which projects vectors onto the subspace V.



Low-Rank Approximation

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}$



Note: XVV^{*T*} has rank *k*. It is a low-rank approximation of **X**.

$$XVV^{\mathsf{T}} = \underset{\mathsf{B with rows in }\mathcal{V}}{\arg\min} \|\mathsf{X} - \mathsf{B}\|_{F}^{2} = \sum_{i,j} (\mathsf{X}_{i,j} - \mathsf{B}_{i,j})^{2}$$

So Far: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}.$

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

- Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i, (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\mathbf{V}^{\mathsf{T}}\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\|_2.$
- Can use $\mathbf{XV} \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace ${\mathcal V}$ and correspondingly ${\textbf V}.$

Quick Exercise: Show that VV^T is idempotent. I.e., $(VV^T)(VV^T)\vec{y} = (VV^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Why does this make sense intuitively?

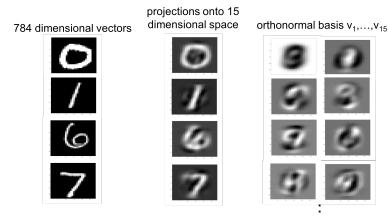
Less Quick Exercise: (Pythagorean Theorem) Show that:

$$\|\vec{y}\|_{2}^{2} = \|(\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2} + \|\vec{y} - (\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2}$$

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of *k* vectors.



Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

							_	
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price		bedrooms
home 1	2	2	1800	2	200,000	195,000	home 1	2
home 2	4	2.5	2700	1	300,000	310,000	home 2	4
			•	•	•	•		
•		•	•	•	•	•	•	
•	•	•	•	•	•	•		•
home n	5	3.5	3600	3	450,000	450,000	home n	5 ¹⁶