COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 15

Logistics

- Midterms should be graded by end of the week.
- Will release grades once we are done and hand them back in class next week.
- Quiz due Monday 8pm as usual this week.

Summary

Last Few Classes:

The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension d to $O\left(\frac{\log n / \delta}{\epsilon^{2}}\right)$ dimensions and preserve (with probability $\geq 1-\delta$) all pairwise distances up to $1 \pm \epsilon$.

Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)

High-Dimensional Geometry

- Why high-dimensional space is so different than low-dimensional space.
- How the JL Lemma can still work, and why it is optimal.

Summary

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce d-dimenional data points to a smaller dimension m.
- Like JL, compression is linear - by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- Can give better compression than random projection (although not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis, column/row span, eigenvectors, etc.

Embedding with Assumptions

ml^{d}

Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Embedding with Assumptions
Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_{\mathrm{k}}, \vec{x}_{j}$:

$$
V_{x_{i}}^{\dagger} \in \mathbb{R}^{k} \underbrace{\left\|V^{\top} \vec{x}_{i}-V^{\top} \vec{x}_{j}\right\|_{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .}_{k \times 1}
$$

Embedding with Assumptions

Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Claim: Let $\vec{v}_{1}, \ldots, \vec{V}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_{i}, \vec{x}_{j} :

$$
\left\|\mathbf{V}^{\top} \vec{x}_{i}-\mathbf{V}^{\top} \vec{x}_{j}\right\|_{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}
$$

$\cdot \mathbf{V}^{\top} \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_{1}, \ldots, \vec{x}_{n}$ into k dimensions with no distortion.

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\underline{\mathcal{V}} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_{i}, \overline{\vec{x}_{j}} \in \mathcal{V}$:

$$
\mathcal{F} c_{i}, j \in \mathbb{R}^{k}: \quad \underline{x i}^{\left\|V^{\top} \bar{x}_{i}-v^{\top} \vec{x}_{j}\right\|_{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}} \underbrace{v_{i}(2)}_{v_{i} c_{i}(1)+v_{2}} \quad x_{j}=V v_{k} c_{i}(k)
$$

x_{i} is a liner comb. of $v_{1} \cdots v_{k}$

$$
\begin{aligned}
& \left\|V^{\top} V_{c i}-V^{\top} V_{c j}\right\|_{2}=\left\|V_{c i}-V_{c j}\right\|_{2} \\
& \left(V^{\top} V\right)_{i j}=\left\langle V_{i}, V_{j}\right\rangle
\end{aligned}
$$

$\left\|c_{i}-c_{j}\right\|_{2}^{2}=\left\|V_{c_{i}}-V_{c j}\right\|_{2}^{2}$ (want to prove)
Fact: for any $y,\|y\|_{2}^{2}=\langle y, y\rangle=y^{\top} y=\sum_{i=1}^{c} y(i) y(i)=\left\{y(i)^{2} \cdot\|y\|_{3}^{2}\right.$

$$
\begin{aligned}
\left\|V_{L_{i}}-V_{c j}\right\|_{2}^{2}=\left\|V\left(c_{i}-c_{j}\right)\right\|_{2}^{2}=\begin{array}{ll}
\left(c_{i}-c_{j}\right)^{\top} V^{\top} / V\left(c_{i}-c_{i}\right) & =\left(c_{i}-c_{j}\right)^{\top}\left(c_{i}-c_{j}\right) \\
{\left[V\left(c_{i}-c_{j}\right)\right]^{\top}} & =\left\|c_{i}-c_{j}\right\|_{2}^{L}
\end{array}
\end{aligned}
$$

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{V}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathrm{V}^{\top} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$.

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{V}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathrm{V}^{\top} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$. The key idea behind low-rank approximation and principal component analysis (PCA).

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{V}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathrm{V}^{\top} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find \mathcal{V} and V ?
- How good is the embedding?

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

Low-Rank Factorization

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Letting $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V}, can write \vec{x}_{i} as:

$$
\underline{\vec{x}_{i}}=\underline{\mathrm{V} \vec{c}_{i}}=c_{i, 1} \cdot \vec{v}_{1}+c_{i, 2} \cdot \vec{v}_{2}+\ldots+c_{i, k} \cdot \vec{v}_{k} .
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Letting $\vec{v}_{1}, \ldots, \vec{v}_{R}$ be an orthonormal basis for \mathcal{V}, can write \vec{x}_{i} as:

$$
\vec{x}_{i}=\mathrm{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+c_{i, 2} \cdot \vec{v}_{2}+\ldots+c_{i, k} \cdot \vec{v}_{k} .
$$

- So $\vec{v}_{1}, \ldots, \vec{v}_{k}$ span the rows of X and thus rank $(X) \leq k$.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Every data point \vec{x}_{i} (row of X) can be written as $\vec{x}_{i}=\mathrm{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n}$: data points (in \mathbb{R}^{d}), \mathcal{V} : k-dimensional subspace of $\mathbb{R}^{d}, \vec{v}_{1}, \ldots, \vec{v}_{k} \in$ \mathbb{R}^{d} : orthogonal basis for $\mathcal{V} . \mathrm{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{\mathrm{v}}_{1}, \ldots, \vec{v}_{k}$.

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Every data point \vec{x}_{i} (row of \boldsymbol{X}) can be written as
$\underline{\vec{x}_{i}}=\underline{\mathrm{V} \vec{c}_{i}}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k}$.

$\vec{x}_{1}, \ldots, \vec{x}_{n}$: data points (in \mathbb{R}^{d}), \mathcal{V} : k-dimensional subspace of $\mathbb{R}^{d}, \vec{v}_{1}, \ldots, \vec{v}_{k} \in$ \mathbb{R}^{d} : orthogonal basis for $\mathcal{V} . \mathrm{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Every data point \vec{x}_{i} (row of \boldsymbol{X}) can be written as $\vec{x}_{i}=\mathrm{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{V}_{k} . \quad n \times k+k \times d$ k parameters d dimensions

- X can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.
$\vec{x}_{1}, \ldots, \overrightarrow{\bar{x}}_{n}$: data points (in \mathbb{R}^{d}), \mathcal{V} : k-dimensional subspace of $\mathbb{R}^{d}, \vec{v}_{1}, \ldots, \vec{v}_{k} \in$ \mathbb{R}^{d} : orthogonal basis for \mathcal{V}. $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Every data point \vec{x}_{i} (row of \boldsymbol{X}) can be written as

$$
\vec{x}_{i}=\mathrm{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k} .
$$

k parameters

- X can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of $\mathrm{V} \Longrightarrow$ the columns of X are spanned by k vectors: the columns of C.
$\vec{x}_{1}, \ldots, \vec{x}_{n}:$ data points (in $\left.\mathbb{R}^{d}\right), \mathcal{V}: k$-dimensional subspace of $\mathbb{R}^{d}, \vec{v}_{1}, \ldots, \vec{v}_{k} \in$
$\mathbb{R}^{d}:$ orthogonal basis for $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

Exercise: What is this coefficient matrix C ? Hint: Use that $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$.

$$
X V=C V N^{T t^{t}} \Rightarrow X V=C
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

Exercise: What is this coefficient matrix C ? Hint: Use that $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$.

- $\mathrm{X}=\mathrm{CV}^{\top} \Longrightarrow \mathrm{XV}=\mathrm{CV}^{\top} \mathrm{V}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

Exercise: What is this coefficient matrix C ? Hint: Use that $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$.

- $\mathrm{X}=\mathrm{CV}^{\top} \Longrightarrow \mathrm{XV}=\mathrm{CV}^{\top} \mathrm{V} \Longrightarrow \mathrm{XV}=\mathrm{C}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top} . V^{\top} X_{1} \ldots V^{\top} X_{n}$

Exercise: What is this coefficient matrix C ? Bint: Use that $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$.

- $\mathrm{X}=\mathrm{CV}^{\top} \Longrightarrow \mathrm{XV}=\mathrm{CV}^{\top} \mathrm{V} \Longrightarrow \mathrm{XV}=\mathrm{C}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathrm{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Projection View

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

Projection View

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $n \times d$ dxk $k-d=n \times d$
$X=X V V^{\top}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Projection View

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as
$V_{V}^{T}=I$

$$
\mathrm{X}=\mathrm{XVV}{ }^{\top} .
$$

- VV^{\top} is a projection matrix, which projects vectors onto the subspace \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Projection View

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathrm{X}=\mathrm{XVV}{ }^{\top} .
$$

- VV^{\top} is a projection matrix, which projects vectors onto the subspace \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Projection View
Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
X^{N} v^{\top} \quad x=x V_{i}^{\top} \quad X=C
$$

$\operatorname{rakk}\left(3 V^{\top}\right) \leqslant k$

Projection View

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathrm{X}=\mathrm{XVV}^{\top} .
$$

- VV^{\top} is a projection matrix, which projects vectors onto the subspace \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\sqrt[V \in \mathbb{R}^{d \times k} \text {, the data matrix can be approximated as: }]{\text { a }}$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathrm{X} \approx \mathrm{XVV}^{\top}
$$

d-dimensional space

Note: $\mathbf{X V V}^{\top}$ has rank k. It is a low-rank approximation of \mathbf{X}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \in_{\mathbb{R}} \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

Note: $\mathbf{X V V}^{\top}$ has rank k. It is a low-rank approximation of \mathbf{X}.

$$
\underline{\mathrm{XVV}^{\top}}=\underset{\mathrm{B} \text { with rows in } \mathcal{V}}{\arg \min } \underline{\mathrm{X}-\mathrm{B} \|_{F}^{2}}=\sum_{i, j}\left(\mathrm{X}_{\mathrm{i}, \mathrm{j}}-\mathrm{B}_{\mathrm{i}, \mathrm{j}}\right)^{2} .
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
X \approx X V V^{\top}
$$

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
X \approx X V V^{\top}
$$

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

- Letting $\left(X V V^{\top}\right)_{i},\left(X V V^{\top}\right)_{j}$ be the $i^{\text {th }}$ and $j^{\text {th }}$ projected data points,

$$
\left\|\left(X V V^{\top}\right)_{i}-\left(X V V^{\top}\right)_{j}\right\|_{2}=\left\|\left[(X V)_{i}-(X V)_{j}\right] V^{\top}\right\|_{2}=\left\|\left[(X V)_{i}-(X V)_{j}\right]\right\|_{2}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\underline{\underline{X} \approx X V^{\top}} . \quad\left\|X-X V V^{\top}\right\|_{F}^{2}
$$

This is the closest approximation to X with rows in $\mathcal{\mathcal { V } \text { (i.e., in the }}$ column span of V).

- Letting $\left(\mathbf{X V V}^{\top}\right)_{i},\left(\mathbf{X V V}^{\top}\right)_{j}$ be the $i^{\text {th }}$ and $j^{\text {th }}$ projected data points,

$$
\left\|\left(X V V^{\top}\right)_{i}-\left(X V V^{\top}\right)_{j}\right\|_{2}=\left\|\left[(X V)_{i}-(X V)_{j}\right] V^{\top}\right\|_{2}=\left\|\left[(X V)_{i}-(X V)_{j}\right]\right\|_{2}
$$

- Can us $x \mathrm{XV} \neq \mathbb{R}^{n \times k}$ as a compressed approximate data set.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\xrightarrow{\mathrm{X} \approx \mathrm{XVV}^{\top}}
$$

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

- Letting $\left(X V V^{\top}\right)_{i},\left(X V V^{\top}\right)_{j}$ be the $i^{\text {th }}$ and $j^{\text {th }}$ projected data points,

$$
\left\|\left(X V V^{\top}\right)_{i}-\left(X V V^{\top}\right)_{j}\right\|_{2}=\left\|\left[(X V)_{i}-(X V)_{j}\right] V^{\top}\right\|_{2}=\left\|\left[(X V)_{i}-(X V)_{j}\right]\right\|_{2}
$$

- Can use XV $\in \mathbb{R}^{n \times k}$ as a compressed approximate data set. Key question is how to find the subspace \mathcal{V} and correspondingly V .
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Properties of Projection Matrices

Quick Exercise: Show that VV^{\top} is idempotent. I.e., $\left(\mathbf{V} \mathbf{V}^{\top}\right)\left(\mathrm{VV}^{\top}\right) \vec{y}=\left(\mathrm{VV}^{\top}\right) \vec{y}$ for any $\vec{y} \in \mathbb{R}^{d}$.
Why does this make sense intuitively?
Less Quick Exercise:(Pythagorean Theorem) Show that:

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- The rows of \mathbf{X} can be approximately reconstructed from a basis of k vectors.

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- The rows of \boldsymbol{X} can be approximately reconstructed from a basis of k vectors.

784 dimensional vectors
projections onto 15

dimensional space
orthonormal basis $\mathrm{v}_{1}, \ldots, \mathrm{v}_{15}$

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors.

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
.	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	
home n	5	3.5	3600	3	450,000	450,000

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
.	-	.	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	
home n	5	3.5	3600	3	450,000	450,000

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
.	-	.	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	
home n	5	3.5	3600	3	450,000	450,000

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

	10000* bathrooms+ 10^{*} (sq. ft.) \approx list price					
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	
home n	5	3.5	3600	3	450,000	450,000

