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Logistics

• Midterms should be graded by end of the week.
• Will release grades once we are done and hand them back
in class next week.

• Quiz due Monday 8pm as usual this week.
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Summary

Last Few Classes:

The Johnson-Lindenstrauss Lemma

• Reduce n data points in any dimension d to O
(

log n/δ
ϵ2

)

dimensions and preserve (with probability ≥ 1− δ) all pairwise
distances up to 1± ϵ.

• Compression is linear via multiplication with a random, data
oblivious, matrix (linear compression)

High-Dimensional Geometry

• Why high-dimensional space is so different than
low-dimensional space.

• How the JL Lemma can still work, and why it is optimal.

3

:



Summary

Next Few Classes: Low-rank approximation, the SVD, and principal
component analysis (PCA).

• Reduce d-dimesional data points to a smaller dimension m.

• Like JL, compression is linear – by applying a matrix.

• Chose this matrix carefully, taking into account structure of the
dataset.

• Can give better compression than random projection (although
not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis,
column/row span, eigenvectors, etc.
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Embedding with Assumptions

Assume that data points x⃗1, . . . , x⃗n lie in any k-dimensional subspace
V of Rd.

Claim: Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be
the matrix with these vectors as its columns. For all x⃗i, x⃗j:

∥VTx⃗i − VTx⃗j∥2 = ∥⃗xi − x⃗j∥2.

• VT ∈ Rk×d is a linear embedding of x⃗1, . . . , x⃗n into k dimensions
with no distortion.
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Dot Product Transformation

Claim: Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be
the matrix with these vectors as its columns. For all x⃗i, x⃗j ∈ V :

∥VTx⃗i − VTx⃗j∥2 = ∥⃗xi − x⃗j∥2.
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Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points x⃗1, . . . , x⃗n
lie close to any k-dimensional subspace V of Rd.

Letting v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns, VTx⃗i ∈ Rk is still a good
embedding for xi ∈ Rd.

The key idea behind low-rank approximation
and principal component analysis (PCA).

• How do we find V and V?

• How good is the embedding?
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Low-Rank Factorization

Claim: x⃗1, . . . , x⃗n lie in a k-dimensional subspace V ⇔ the data
matrix X ∈ Rn×d has rank ≤ k.

• Letting v⃗1, . . . , v⃗k be an orthonormal basis for V , can write x⃗i as:

x⃗i = V⃗ci = ci,1 · v⃗1 + ci,2 · v⃗2 + . . .+ ci,k · v⃗k.

• So v⃗1, . . . , v⃗k span the rows of X and thus rank(X) ≤ k.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Claim: x⃗1, . . . , x⃗n ∈ Rd lie in a k-dimensional subspace V ⇔ the data
matrix X ∈ Rn×d has rank ≤ k.

• Every data point x⃗i (row of X) can be written as
x⃗i = V⃗ci = ci,1 · v⃗1 + . . .+ ci,k · v⃗k.

• X can be represented by (n+ d) · k parameters vs. n · d.

• The rows of X are spanned by k vectors: the columns of V =⇒
the columns of X are spanned by k vectors: the columns of C.

x⃗1, . . . , x⃗n : data points (in Rd), V : k-dimensional subspace of Rd , v⃗1, . . . , v⃗k ∈
Rd : orthogonal basis for V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Low-Rank Factorization

Claim: If x⃗1, . . . , x⃗n lie in a k-dimensional subspace with orthonormal
basis V ∈ Rd×k, the data matrix can be written as X = CVT.

Exercise: What is this coefficient matrix C? Hint: Use that VTV = I.

• X = CVT =⇒ XV = CVTV

=⇒ XV = C

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Projection View

Claim: If x⃗1, . . . , x⃗n lie in a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be written as

X = CVT.

• VVT is a projection matrix, which projects vectors onto the
subspace V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 11
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Low-Rank Approximation

Claim: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT

Note: XVVT has rank k. It is a low-rank approximation of X.

XVVT = argmin
B with rows in V

∥X− B∥2F =
∑

i,j

(Xi,j − Bi,j)
2.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 12
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Low-Rank Approximation

So Far: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT.

This is the closest approximation to X with rows in V (i.e., in the
column span of V).

• Letting (XVVT)i, (XVVT)j be the ith and jth projected data points,

∥(XVVT)i − (XVVT)j∥2 = ∥[(XV)i − (XV)j]VT∥2 = ∥[(XV)i − (XV)j]∥2.

• Can use XV ∈ Rn×k as a compressed approximate data set.

Key question is how to find the subspace V and correspondingly V.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Properties of Projection Matrices

Quick Exercise: Show that VVT is idempotent. I.e.,
(VVT)(VVT)⃗y = (VVT)⃗y for any y⃗ ∈ Rd.

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show that:

∥⃗y∥22 = ∥(VVT)⃗y∥22 + ∥⃗y− (VVT)⃗y∥22.

14
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A Step Back: Why Low-Rank Approximation?

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis
of k vectors.
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Dual View of Low-Rank Approximation

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

16



Dual View of Low-Rank Approximation

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

16



Dual View of Low-Rank Approximation

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

16



Dual View of Low-Rank Approximation

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

16

=



Dual View of Low-Rank Approximation

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

16



Dual View of Low-Rank Approximation

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

16

- - -

I - I


