COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2022. Lecture 15

- Midterms should be graded by end of the week.
- Will release grades once we are done and hand them back in class next week.
- Quiz due Monday 8pm as usual this week.

Summary

Last Few Classes:

The Johnson-Lindenstrauss Lemma

• Reduce *n* data points in any dimension *d* to $O\left(\frac{\log n/\delta}{\epsilon^2}\right)$ dimensions and preserve (with probability $\geq 1 - \delta$) all pairwise distances up to $1 \pm \epsilon$.

Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)

High-Dimensional Geometry

- Why high-dimensional space is so different than low-dimensional space.
- \cdot How the JL Lemma can still work, and why it is optimal.

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce *d*-dimesional data points to a smaller dimension *m*.
- Like JL, compression is linear by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- Can give better compression than random projection (although not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis, column/row span, eigenvectors, etc.

Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie in any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie in any k-dimensional subspace ${\mathcal V}$ of ${\mathbb R}^d.$ d-dimensional space 21 k-dim. subspace ${\mathcal V}$ 1.52 LIDY **Claim:** Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x_i}, \vec{x_j}$: $\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$ K×1 VXiERK

Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie in any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_i :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

• $\mathbf{V}^{T} \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_{1}, \dots, \vec{x}_{n}$ into k dimensions with no distortion.

Dot Product Transformation

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_i, \vec{x}_i \in \mathcal{V}$: $\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_i\|_2 = \|\vec{x}_i - \vec{x}_i\|_2.$ $\exists G_i, C_j \in \mathbb{R}^K : X_i = \bigvee C_j \quad X_j = \bigvee C_j$ $\begin{array}{c} v_{1} c_{i}(1) + v_{2} c_{i}(2) \dots v_{k} c_{i}(k) \\ \times i i \ell \quad \alpha \quad \text{line construct} \quad \Delta f \quad v_{1} \dots v_{k} \\ \| V^{T} V_{c_{i}} - V^{T} V_{c_{j}} \|_{2} = \| V_{c_{i}} - V_{c_{j}} \|_{2} \end{array}$ $(\sqrt{1}\sqrt{1})_{ij} = \langle \sqrt{1}\sqrt{2}\sqrt{2}$ $\frac{\|c_i - c_j\|_2^2}{2} = \frac{\|v_{c_i} - v_{c_j}\|_2^2}{|v_{c_i} - v_{c_j}\|_2^2}$ (want to prove) Fact: for my y, $\|y\|_{2}^{2} = \langle y, y \rangle = y_{T}^{T}y = \xi y(i) y(i)^{2} \xi y(i)^{2} \|y\|_{2}^{2}$ $\frac{\|V_{c_{1}} - V_{c_{j}}\|_{2}^{2}}{\|V(c_{i} - c_{j})\|_{1}^{2}} = (c_{1} - c_{j})^{T} \sqrt{V(c_{1} - c_{j})} = (c_{i} - c_{j})^{T} (c_{i} - c_{j})$

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$.

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

- \cdot How do we find ${\cal V}$ and V?
- How good is the embedding?

Claim: $\vec{x_1}, \dots, \vec{x_n}$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write \vec{x}_i as:

$$\underline{\vec{x}_i} = \underline{V\vec{c}_i} = c_{i,1} \cdot \vec{v}_1 + c_{i,2} \cdot \vec{v}_2 + \ldots + c_{i,k} \cdot \vec{v}_k$$

Claim: $\vec{x_1}, \dots, \vec{x_n}$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write \vec{x}_i as:

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + c_{i,2}\cdot\vec{v}_2 + \ldots + c_{i,k}\cdot\vec{v}_k.$$

• So $\vec{v}_1, \ldots, \vec{v}_k$ span the rows of **X** and thus $rank(\mathbf{X}) \leq k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Every data point \vec{x}_i (row of X) can be written as $\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k.$

Claim: $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

Claim: $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- X can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of $V \implies$ the columns of X are spanned by k vectors: the columns of C.

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.

Exercise: What is this coefficient matrix **C**? Hint: Use that $V^T V = I$. $XV = CVV^T \implies XV = C$

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^T V = I$.

$$\cdot \ \mathbf{X} = \mathbf{C} \mathbf{V}^{\mathsf{T}} \implies \mathbf{X} \mathbf{V} = \mathbf{C} \mathbf{V}^{\mathsf{T}} \mathbf{V}$$

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^T V = I$.

$$\cdot X = CV^T \implies XV = CV^TV \implies XV = C$$

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

n data points $\begin{bmatrix} \mathbf{x}_i^T \\ \mathbf{X} \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_i^T \\ \mathbf{c}_i^T \end{bmatrix} \begin{bmatrix} \mathbf{c}_i^T \\ \mathbf{c}_i^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_i^T \\ \mathbf{v} \end{bmatrix} = \tilde{\mathbf{x}}_i^T$ Exercise: What is this coefficient matrix C? Hint: Use that $\mathbf{V}^T \mathbf{V} = \mathbf{I}$.

 $\cdot X = CV^{T} \implies XV = CV^{T}V \implies XV = C$

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = CV^{T}.$$

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{x} \in \mathbf{V} \in \mathbb{R}^{d \times k}$, $\mathbf{x} \in \mathbf{X} \in \mathbb{R}^{d \times k}$, $\mathbf{x} \in \mathbb{R}^{d \times k}$, $\mathbf{x} \in \mathbb$

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$V^T V^{T}$$
 $X = X V V^T.$

• WV^T is a projection matrix, which projects vectors onto the subspace \mathcal{V} .

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

• **VV**^T is a projection matrix, which projects vectors onto the subspace \mathcal{V} .

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^{T}.$$

• WV^T is a projection matrix, which projects vectors onto the subspace \mathcal{V} .

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathrm{T}}$

Note: XVV^{*T*} has rank *k*. It is a low-rank approximation of **X**.

Note: XVV^{*T*} has rank *k*. It is a low-rank approximation of **X**.

$$XVV^{\mathsf{T}} = \underset{\mathsf{B with rows in }\mathcal{V}}{\operatorname{arg min}} \|\mathbf{X} - \mathbf{B}\|_{F}^{2} = \sum_{i,j} (\mathbf{X}_{i,j} - \mathbf{B}_{i,j})^{2}.$$

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}.$

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

So Far: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T.$

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

• Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i, (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\mathbf{V}^{\mathsf{T}}\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\|_2.$

So Far: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as: $\mathbf{X} \approx \underbrace{\mathbf{X} \mathbf{W}^T}_{\mathbf{V}}. \qquad \left\| \underbrace{\mathbf{X}}_{\mathbf{V}} - \underbrace{\mathbf{X}}_{\mathbf{V}} \underbrace{\mathbf{V}}_{\mathbf{F}}^{\mathsf{T}} \right\|_{\mathbf{F}}^2$

This is the closest approximation to **X** with rows in $\overline{\mathcal{V}}$ (i.e., in the column span of **V**).

 Letting (XVV^T)_i, (XVV^T)_j be the *ith* and *jth* projected data points, ||(XVV^T)_i - (XVV^T)_j||₂ = ||[(XV)_i - (XV)_j]V^T||₂ = ||[(XV)_i - (XV)_j]||₂.
Can use XV ∈ ℝ^{n×k} as a compressed approximate data set.

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

- Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i, (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\mathbf{V}^{\mathsf{T}}\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\|_2.$
- Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace ${\mathcal V}$ and correspondingly V.

Quick Exercise: Show that VV^T is idempotent. I.e., $(VV^T)(VV^T)\vec{y} = (VV^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show that:

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of *k* vectors.

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of *k* vectors.

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
					•	
		•		•	•	
•	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
			•	•	•	
•	•	•	•	•	•	•
•	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•						
•			•			
•		•	•	•	-	
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

16