COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2022. Lecture 14

- We will be grading the exams this week.
- We will release solutions, but still have some students taking make up exams, so are holding off.
- Feel free to ask about the questions in office hours.

Summary

Last Few Classes: The Johnson-Lindenstrauss Lemma

- Dimensionality reduction and low-distortion embeddings.
- Statement of the JL Lemma: we can obtain low-distortion embeddings for any set of points via random projection.
- Reduction of the JL Lemma to the 'distributional JL Lemma'.
- Proof of the distributional JL lemma.

This Class:

• Connections between the JL Lemma, low-distortion embeddings, and high dimensional geometry.

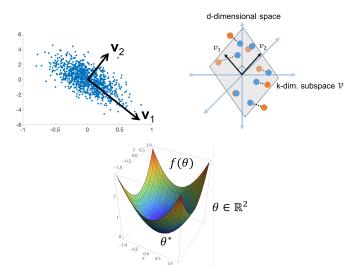
Next Few Classes:

• Data-dependent dimensionality reduction via PCA. Formulation as low-rank matrix approximation.

The Johnson-Lindenstrauss Lemma and High Dimensional Geometry

- High-dimensional Euclidean space looks very different from low-dimensional space. So how can JL work?
- Is Euclidean distance in high-dimensional meaningless, making JL useless? (The curse of dimensionality)

Low-Dimensional Intuition



This can be a bit dangerous as in reality high-dimensional space is very different from low-dimensional space.

Orthogonal Vectors

What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space?

a) 1 b) $\log d$ c) \sqrt{d} d) d

What is the largest set of unit vectors in *d*-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$) a) *d* b) $\Theta(d)$ c) $\Theta(d^2)$ d) $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Claim: $2^{\Theta(\epsilon^2 d)}$ random *d*-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$ (be nearly orthogonal) with high probability.

Proof: Let $\vec{x_1}, \ldots, \vec{x_t}$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$
- By a Chernoff bound, $\Pr[|\langle \vec{x}_i, \vec{x}_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$ (great exercise).
- If we chose $t = \frac{1}{2}e^{\epsilon^2 d/12}$, using a union bound over all $\binom{t}{2} \leq \frac{1}{8}e^{\epsilon^2 d/6}$ possible pairs, with probability $\geq 3/4$ all will be nearly orthogonal.

Curse of Dimensionality

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T\vec{x}_j \in [1.98, 2.02].$$

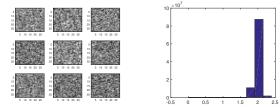
Even with an exponential number of random vector samples, we don't see any nearby vectors.

- One version of the 'curse of dimensionality'.
- If all your distances are roughly the same, distance based methods (k-means clustering, nearest neighbors, SVMs, etc.) aren't going to work well.
- Distances are only meaningful if we have lots of structure and our data isn't just independent random vectors.

Curse of Dimensionality

Distances for MNIST Digits:

Distances for Random Images:



2.5 2 1.5

Another Interpretation: Tells us that random data can be a very bad model for actual input data.

Recall: The Johnson Lindenstrauss lemma states that if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1-\epsilon)\|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1+\epsilon)\|\vec{x}_i - \vec{x}_j\|_2^2$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in *d*-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\mathbf{n}\vec{x}_1}{\|\|\mathbf{n}\vec{x}_1\|\|_2}, \ldots, \frac{\mathbf{n}\vec{x}_n}{\|\|\mathbf{n}\vec{x}_n\|\|_2}$ are nearly orthogonal unit vectors in *m*-dimensions (with pairwise dot products bounded by ϵ).

• Algebra is a bit messy but a good exercise to partially work through.

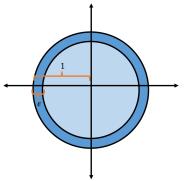
Claim 1: *n* nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In *m* dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} \ge 2^{O(\log n)} = n$. Tells us that the JL lemma is optimal up to constants.
- *m* is chosen just large enough so that the odd geometry of *d*-dimensional space still holds on the *n* points in question after projection to a much lower dimensional space.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}.$

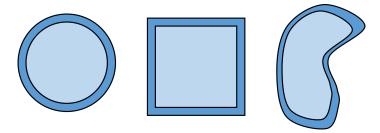
What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface? Answer: all but a $(1 - \epsilon)^d \leq e^{-\epsilon d}$ fraction. Exponentially small in the dimension d!



Volume of a radius *R* ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $||x||_2 \le 1$, nearly all will have $||x||_2 \ge 1 - \epsilon$.

• **Isoperimetric inequality**: the ball has the minimum surface area/volume ratio of any shape.



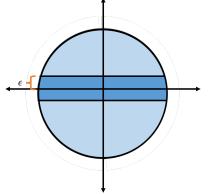
- If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.
- 'All points are outliers.'

What fraction of the small cubes are visible on the surface of the larger 10 \times 10 \times 10 cube?



$$\frac{10^3 - 8^3}{10^3} = \frac{1000 - 512}{1000} = .488.$$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

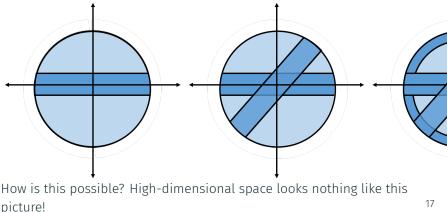


Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

By symmetry, all but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume falls within ϵ of any equator! $S = \{x \in \mathcal{B}_d : |\langle x, t \rangle| \le \epsilon\}$

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.



- High-dimensional space behaves very differently from low-dimensional space.
- Random projection (i.e., the JL Lemma) reduces to a much lower-dimensional space that is still large enough to capture this behavior on a subset of *n* points.
- Need to be careful when using low-dimensional intuition for high-dimensional vectors.
- Need to be careful when modeling data as random vectors in high-dimensions.

Additional Material

Concentration of Volume At Equator

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

Proof Sketch:

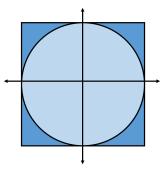
- Let x have independent Gaussian $\mathcal{N}(0, 1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. What is $\mathbb{E}[\|x\|_2^2]$? $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$
- Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed, $\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$

$$\leq \Pr[|x(1)| > \epsilon \cdot \sqrt{d/2}] = 2^{\Theta(-(\epsilon \sqrt{d/2})^2)} = 2^{\Theta(-\epsilon^2 d)}.$$

High-Dimensional Cubes

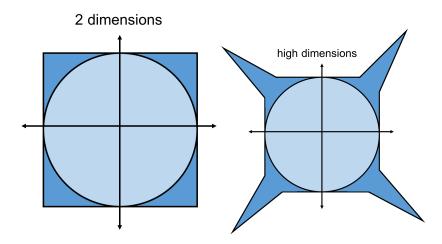
Let C_d be the *d*-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \forall i\}.$

In low-dimensions, the cube is not that different from the ball.



But volume of C_d is 2^d while volume of \mathcal{B}^d is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap! So something is very different about these shapes...

High-Dimensional Cubes



Corners of cube are \sqrt{d} times further away from the origin than the surface of the ball.

High-Dimensional Cubes

Data generated from the ball \mathcal{B}_d will behave very differently than data generated from the cube \mathcal{C}_d .

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = ?d/3$, and $\Pr[\|x\|_2^2 \le d/6] \le 2^{-\Theta(d)}$.
- Almost all the volume of the unit cube falls far away from the origin i.e., far outside the unit ball.

