COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 14

Logistics

- We will be grading the exams this week.
- We will release solutions, but still have some students taking make up exams, so are holding off.
- Feel free to ask about the questions in office hours.

Summary

Last Few Classes: The Johnson-Lindenstrauss Lemma

- Dimensionality reduction and low-distortion embeddings.
- Statement of the JL Lemma: we can obtain low-distortion embeddings for any set of points via random projection.
- Reduction of the JL Lemma to the 'distributional JL Lemma'.
- Proof of the distributional JL lemma.

This Class:

- Connections between the JL Lemma, low-distortion embeddings, and high dimensional geometry.

Next Few Classes:

- Data-dependent dimensionality reduction via PCA. Formulation as low-rank matrix approximation.

The Johnson-Lindenstrauss Lemma and High Dimensional Geometry

- High-dimensional Euclidean space looks very different from low-dimensional space. So how can JL work?
- Is Euclidean distance in high-dimensional meaningless, making JL useless? (The curse of dimensionality)

Low-Dimensional Intuition

This can be a bit dangerous as in reality high-dimensional space is very different from low-dimensional space.

Orthogonal Vectors

What is the largest set of mutually orthogonal unit vectors in d-dimensional space?
a) 1
b) $\log d$
c) \sqrt{d}
d) d

Nearly Orthogonal Vectors

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle\vec{x}, \vec{y}\rangle| \leq \epsilon$? (think $\epsilon=.01$)
a) d
b) $\Theta(d)$
c) $\Theta\left(d^{2}\right)$
d) $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Orthogonal Vectors Proof

Claim: $2^{\Theta\left(\epsilon^{2} d\right)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle\vec{x}, \vec{y}\rangle| \leq \epsilon$ (be nearly orthogonal) with high probability.

Proof: Let $\vec{x}_{1}, \ldots, \vec{x}_{t}$ each have independent random entries set to $\pm 1 / \sqrt{d}$.

- What is $\left\|\vec{x}_{i}\right\|_{2}$? Every \vec{x}_{i} is always a unit vector.
- What is $\mathbb{E}\left[\left\langle\vec{x}_{i}, \vec{x}_{j}\right\rangle\right]$? $\mathbb{E}\left[\left\langle\vec{x}_{i}, \vec{x}_{j}\right\rangle\right]=0$
- By a Chernoff bound, $\operatorname{Pr}\left[\left|\left\langle\vec{x}_{i}, \vec{x}_{j}\right\rangle\right| \geq \epsilon\right] \leq 2 e^{-\epsilon^{2} d / 6}$ (great exercise).
- If we chose $t=\frac{1}{2} e^{\epsilon^{2} d / 12}$, using a union bound over all $\binom{t}{2} \leq \frac{1}{8} e^{\epsilon^{2} d / 6}$ possible pairs, with probability $\geq 3 / 4$ all will be nearly orthogonal.

Curse of Dimensionality

Up Shot: In d-dimensional space, a set of $2^{\Theta\left(\epsilon^{2} d\right)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon=.01$)

$$
\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}^{2}=\left\|\vec{x}_{i}\right\|_{2}^{2}+\left\|\vec{x}_{j}\right\|_{2}^{2}-2 \vec{x}_{i}^{\top} \vec{x}_{j} \in[1.98,2.02] .
$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

- One version of the 'curse of dimensionality'.
- If all your distances are roughly the same, distance based methods (k-means clustering, nearest neighbors, SVMs, etc.) aren't going to work well.
- Distances are only meaningful if we have lots of structure and our data isn't just independent random vectors.

Curse of Dimensionality

Distances for MNIST Digits:

Distances for Random Images:

Another Interpretation: Tells us that random data can be a very bad model for actual input data.

Connection to Dimensionality Reduction

Recall: The Johnson Lindenstrauss lemma states that if $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m=0\left(\frac{\log n}{\epsilon^{2}}\right)$, for $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ with high probability, for all i, j :

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}^{2} \leq\left\|\boldsymbol{\Pi} \vec{x}_{i}-\boldsymbol{\Pi} \vec{x}_{j}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}^{2} .
$$

Implies: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon / 8$), then $\frac{\pi \vec{x}_{1}}{\left\|\boldsymbol{\Pi} \vec{x}_{1}\right\|_{2}}, \ldots, \frac{\boldsymbol{\Pi} \vec{n}_{n}}{\left\|\vec{x}_{n}\right\|_{2}}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

- Algebra is a bit messy but a good exercise to partially work through.

Connection to Dimensionality Reduction

Claim 1: n nearly orthogonal unit vectors can be projected to $m=0\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions and still be nearly orthogonal.
Claim 2: In m dimensions, there are at most $2^{0\left(\epsilon^{2} m\right)}$ nearly orthogonal vectors.

- For both these to hold it must be that $n \leq 2^{O\left(\epsilon^{2} m\right)}$.
- $2^{O\left(\epsilon^{2} m\right)} \geq 2^{O(\log n)}=n$. Tells us that the JL lemma is optimal up to constants.
- m is chosen just large enough so that the odd geometry of d-dimensional space still holds on the n points in question after projection to a much lower dimensional space.

Bizarre Shape of High-Dimensional Balls

Let \mathcal{B}_{d} be the unit ball in d dimensions. $\mathcal{B}_{d}=\left\{x \in \mathbb{R}^{d}:\|x\|_{2} \leq 1\right\}$.
What percentage of the volume of \mathcal{B}_{d} falls within ϵ distance of its surface? Answer: all but a $(1-\epsilon)^{d} \leq e^{-\epsilon d}$ fraction. Exponentially small in the dimension d !

Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d / 2)!} \cdot R^{d}$.

Bizarre Shape of High-Dimensional Balls

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_{2} \leq 1$, nearly all will have $\|x\|_{2} \geq 1-\epsilon$.

- Isoperimetric inequality: the ball has the minimum surface area/volume ratio of any shape.

- If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.
- 'All points are outliers.'

Bizarre Shape of High-Dimensional Balls

What fraction of the small cubes are visible on the surface of the larger $10 \times 10 \times 10$ cube?

$$
\frac{10^{3}-8^{3}}{10^{3}}=\frac{1000-512}{1000}=.488
$$

Bizarre Shape of High-Dimensional Balls

What percentage of the volume of \mathcal{B}_{d} falls within ϵ distance of its equator? Answer: all but a $2^{\Theta\left(-\epsilon^{2} d\right)}$ fraction.

Formally: volume of set $S=\left\{x \in \mathcal{B}_{d}:|x(1)| \leq \epsilon\right\}$.
By symmetry, all but a $2^{\Theta\left(-\epsilon^{2} d\right)}$ fraction of the volume falls within ϵ of any equator! $S=\left\{x \in \mathcal{B}_{d}:|\langle x, t\rangle| \leq \epsilon\right\}$

Bizarre Shape of High-Dimensional Balls

Claim 1: All but a $2^{\Theta\left(-\epsilon^{2} d\right)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible? High-dimensional space looks nothing like this picture!

Take-aways

- High-dimensional space behaves very differently from low-dimensional space.
- Random projection (i.e., the JL Lemma) reduces to a much lower-dimensional space that is still large enough to capture this behavior on a subset of n points.
- Need to be careful when using low-dimensional intuition for high-dimensional vectors.
- Need to be careful when modeling data as random vectors in high-dimensions.

Additional Material

Concentration of Volume At Equator

Claim: All but a $2^{\Theta\left(-\epsilon^{2} d\right)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S=\left\{x \in \mathcal{B}_{d}:|x(1)| \leq \epsilon\right\}$.

Proof Sketch:

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x}=\frac{x}{\|x\|_{2}} \cdot \bar{x}$ is selected uniformly at random from the surface of the ball.
- Suffices to show that $\operatorname{Pr}[|\bar{x}(1)|>\epsilon] \leq 2^{\Theta\left(-\epsilon^{2} d\right)}$. Why?
- $\bar{x}(1)=\frac{x(1)}{\|x\|_{2}}$. What is $\mathbb{E}\left[\|x\|_{2}^{2}\right] ? \mathbb{E}\left[\|x\|_{2}^{2}\right]=\sum_{i=1}^{d} \mathbb{E}\left[x(i)^{2}\right]=d$. $\operatorname{Pr}\left[\|x\|_{2}^{2} \leq d / 2\right] \leq 2^{-\Theta(d)}$
- Conditioning on $\|x\|_{2}^{2} \geq d / 2$, since $x(1)$ is normally distributed,

$$
\begin{aligned}
\operatorname{Pr}[|\bar{x}(1)|>\epsilon] & =\operatorname{Pr}\left[|x(1)|>\epsilon \cdot\|x\|_{2}\right] \\
& \leq \operatorname{Pr}[|x(1)|>\epsilon \cdot \sqrt{d / 2}]=2^{\Theta\left(-(\epsilon \sqrt{d / 2})^{2}\right)}=2^{\Theta\left(-\epsilon^{2} d\right)} .
\end{aligned}
$$

High-Dimensional Cubes

Let \mathcal{C}_{d} be the d-dimensional cube: $\mathcal{C}_{d}=\left\{x \in \mathbb{R}^{d}:|x(i)| \leq 1 \forall i\right\}$. In low-dimensions, the cube is not that different from the ball.

But volume of \mathcal{C}_{d} is 2^{d} while volume of \mathcal{B}^{d} is $\frac{\pi^{\frac{d}{2}}}{(d / 2)!}=\frac{1}{d^{\theta(d)}}$. A huge gap! So something is very different about these shapes...

High-Dimensional Cubes

2 dimensions

Corners of cube are \sqrt{d} times further away from the origin than the surface of the ball.

High-Dimensional Cubes

Data generated from the ball \mathcal{B}_{d} will behave very differently than data generated from the cube \mathcal{C}_{d}.

- $x \sim \mathcal{B}_{d}$ has $\|x\|_{2}^{2} \leq 1$.
- $x \sim \mathcal{C}_{d}$ has $\mathbb{E}\left[\|x\|_{2}^{2}\right]=? d / 3$, and $\operatorname{Pr}\left[\|x\|_{2}^{2} \leq d / 6\right] \leq 2^{-\Theta(d)}$.
- Almost all the volume of the unit cube falls far away from the origin - i.e., far outside the unit ball.

