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Logistics

• The exam is this Thursday in class.
• Closed book, no calculator (will be designed so neither are
needed).

• My office hours are today at 2:30pm in LGRC A215 and tomorrow
at 4:00pm in CS 140.

• Suggested studying approach: Review the study guide to get a
sense of what you need to know, and then mostly focus on
doing practice questions. Review slides only as needed.

• The very last topic on the study guide, high dimensional
geometry, will not be covered.
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Midterm Format

Rough Outline: (subject to changes)

• Question 1: 4-5 True/False questions.

• Question 2: 4-5 short answers, sort of like quiz questions.

• Question 3: 4-5 part question on analyzing an algorithm. Similar
in style to but easier than a homework question.

• Question 4: Challenging 4-5 part question on analyzing an
algorithm – more similar to a homework question.

• Question 5: Extra Credit. 4-5 part question with limited proofs
on the Johnson-Lindenstrauss lemma.

I encourage you to review the JL material as Q5 should not be too
difficult if you know the outline of the JL lemma proof. Do not need
to know details.
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Questions

Content or Format Questions?
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Questions
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Random Hash Functions
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Concentration Bounds
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Sampling For Mean Estimation

Say I have n numbers x1, . . . , xn all lying in [−M,M] with mean
µ = 1

n
∑n

i=1 xi. How can I estimate µ without reading all the numbers?
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Johnson-Lindenstrauss Proof Outline
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Median Trick

The Chernoff bound states that for independent random variables X1, . . . , Xn
taking values in {0, 1}, letting µ = E

[∑n
i=1 Xi

]
, for any δ > 0,

Pr
(∣∣∑n

i=1 Xi − µ
∣∣ > δµ

)
≤ 2 exp

(
− δ2µ

2+δ

)
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Example Problems
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Example Problems

ALWAYS, SOMETIMES, or NEVER:
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