COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 13

Logistics

Markers, Khebyster's
;

- Closed book, no calculator (will be designed so neither are needed).
- My office hours are today at 2:30 pm in LGRC A215 and tomorrow at 4:00 pm in CS 140.
- Suggested studying approach: Review the study guide to get a sense of what you need to know, and then mostly focus on doing practice questions. Review slides only as needed.
- The very last topic on the study guide, high dimensional geometry, will not be covered.
- No simtash, Hyper Log hog

Midterm Format

Rough Outline: (subject to changes)

- Question 1: 4-5 True/False questions.
- Question 2: 4-5 short answers, sort of like quiz questions.
- Question 3: 4-5 part question on analyzing an algorithm. Similar in style to but easier than a homework question.

Midterm Format

Rough Outline: (subject to changes)

- Question 1: 4-5 True/False questions.
- Question 2: 4-5 short answers, sort of like quiz questions.
- Question 3: 4-5 part question on analyzing an algorithm. Similar in style to but easier than a homework question.
- Question 4: Challenging 4-5 part question on analyzing an algorithm - more similar to a homework question.
- Question 5: Extra Credit. 4-5 part question with limited proofs on the Johnson-Lindenstrauss lemma.

I encourage you to review the JL material as Q5 should not be too difficult if you know the outline of the JL lemma proof. Do not need to know details.

Questions

Content or Format Questions?
Bloom Filters: optimal \# hush function $\frac{\ln 2 \cdot m}{n}$

Questions

Questions

Random Hash Functions

Concentration Bounds

Concentration Bound Requirements

Say I have n numbers x_{1}, \ldots, x_{n} all lying in $[-M, M]$ with mean $\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. How can I estimate μ without reading all the numbers?

track S_{i}, x_{i} where $x_{i}=\operatorname{argmin} h\left(x_{j}\right)$

$$
S_{1}=h\left(x_{i}\right)
$$

Johnson-Lindenstrauss Proof Outline

3. Consider an algorithm \mathcal{A} running in time $T(\mathcal{A})$, that with probability 6 outputs an estimate of the number of triangles in an input graph up to error ± 100, and with probability .4 outputs some bad estimate with worse error. Describe an algorithm that outputs an estimate of the number of triangles in an input graph up to error ± 100 with probability $\geqq .99$ and runs in time $O(T(\mathcal{A}))$
run $A+$ times independently $\rightarrow \Delta_{1}, \Delta_{2} \ldots \Delta_{+}$ atput $\tilde{\Delta}=$ median $\left(\Delta_{1}, \ldots \Delta_{t}\right)$
$1-B \operatorname{Pr}\left(\tilde{n}^{-} \Delta \mid \geq 100\right) \leqslant .01$
$\left.\bar{B} P_{1}(b-a) \leqslant 100\right)$
$X=\#$ sucesesil trials. $\mathbb{E} X=06+$
If $x \geq .5+$ than median lies :- $\Delta \pm 100$

$$
\begin{aligned}
& \text { If } x \geq .5 t \text { than median lies ir } \Delta \pm 100 \\
& \text { Pr }(x \leq .5 t) \leq .01 \quad \operatorname{Pr}\left(x \leq \frac{5}{6} \mathbb{E} x\right) \leq \operatorname{Pr}\left(|x-\mathbb{E} x| \geq \frac{1}{6} \mathbb{E}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { taking values in }\{0,1\}, \text { letting } \mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathrm{X}_{i}\right] \text {, for any } \delta>0 \\
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{X}_{i}-\mu\right|>\delta \mu\right) \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)
\end{array}\right.
$$

3. Consider an algorithm \mathcal{A} running in time $T(\mathcal{A})$, that with probability .6 outputs an estimate of the number of triangles in an input graph up to error ± 100, and with probability .4 outputs some bad estimate with worse error. Describe an algorithm that outputs an estimate of the number of triangles in an input graph up to error ± 100 with probability $\geq .99$ and runs in

$$
\begin{aligned}
& \text { time } O(T(\mathcal{A})) \text {. } \\
& \operatorname{Pr}\left(|X-\mathbb{E} X| \geq \frac{1}{6} \mathbb{E} X\right) \leq .01 \\
& x=A \text { sucusfil } \\
& \text { trials } \\
& \leq 2 \exp \left(\frac{-1\left(6^{2} \cdot \cdot 6 t\right.}{2+1 / 6}\right) \\
& =2 \exp (-c t) \quad t>c \quad t=\frac{1}{c} \cdot \log (\alpha / \theta) \\
& \leq .01+ \\
& 2 \exp (-c \cdot t)=2 \exp (-\log (2 / \theta)) \\
& \underset{\substack{\mu=1 / 6}}{\mathcal{E}\left[\sum_{i=1}^{+} x_{1}\right]=\mathbb{E}[X]=6+\cdots=2 \cdot \frac{6}{2}=\theta}
\end{aligned}
$$

The Chernoff bound states that for $\mathcal{\text { ic dependent random variables } X _ { 1 } , \ldots , X _ { n }}$ taking values in $\{0,1\}$, letting $\mu \equiv \mathbb{E}\left[\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}\right]$, for any $\delta>0$,

$$
\operatorname{Pr}(\left|\sum_{i=1}^{n} X_{i}-\mu\right|>\underbrace{\delta \mu}) \leq 2 \exp \overline{\left(-\frac{\delta^{2} \mu}{2+\delta}\right)}
$$

Example Problems

$$
\begin{aligned}
& x=\sum x_{i} \quad \operatorname{Var}(x)=\sum_{i=1}^{\operatorname{Var}\left(x_{1}\right)} \quad \theta \quad \text { t. } O\left(\frac{1}{\theta}\right) \\
& \begin{aligned}
&+0\left(\frac{1}{\theta}\right) \\
&=(\log (1 \theta)) \\
&=x_{1}, \ldots, x_{n}
\end{aligned} \\
& \text { The Chernoff bound states that for independent random variables } X_{1} \\
& \text { taking values in }\{0,1\} \text {, letting } \mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}\right] \text {, for any } \delta>0 \text {, } \\
& \operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{x}_{\mathrm{i}}-\mu\right|>\delta \mu\right) \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right) . \quad \operatorname{pin}_{i}-\boldsymbol{p}_{i}^{-2} \quad 1-2 p_{i}^{i}=0
\end{aligned}
$$

Example Problems

2. Assume there are 1000 registered users on your site u_{1}, \ldots, u_{1000}, and in a given day, each user visits the site with some probability p_{i}. The event that any user visits the site is independent of what the other users do. Assume that $\sum_{i=1}^{1000} p_{i}=500$.
(a) Let \mathbf{X} be the number of users that visit the site on the given day. What is $\mathbb{E}[\mathbf{X}]$.
(b) Apply a Chernoff bound to show that $\operatorname{Pr}[\mathbf{X} \geq 600] \leq .01$.
(c) Apply Markov's inequality and Chebyshev's inequality to bound the same probability. How do they compare?

The Chernoff bound states that for independent random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ taking values in $\{0,1\}$, letting $\mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}\right]$, for any $\delta>0$,
$\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{X}_{i}-\mu\right|>\delta \mu\right) \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)$.

Example Problems

ALWAYS, SOMETIMES, or NEVER:

2. $\operatorname{Pr}\left[\max \left(X_{1}, \ldots X_{n}\right) \geq t\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[X_{i} \geq t\right]$ for any random variables X_{1}, \ldots, X_{n}.
(c) $\operatorname{Pr}[\mathbf{X}=s \cap \mathbf{Y}=t]=\operatorname{Pr}[\mathbf{X}=s] \cdot \operatorname{Pr}[\mathbf{Y}=t]$.
