COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 12

Logistics

- Problem Set 2 is due Friday, 11:59pm.
- No quiz this week.
- The exam will be held next Thursday in class.
- We will do some midterm review in class on Tuesday. I will also hold additional office hours for midterm prep, TBD.

Summary

Last Class: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction and low-distortion embeddings.
- Statement of the JL Lemma: we can obtain low-distortion embeddings for any set of points via random projection.

This Class:

- Reduction of the JL Lemma to the 'distributional JL Lemma'.
- Proof of the distributional JL lemma.
- Example application to clustering.

The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ and $\epsilon>0$ there exists a linear map $\boldsymbol{\Pi}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ such that $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ and letting $\tilde{x}_{i}=\boldsymbol{\Pi} \vec{x}_{i}$:

$$
\text { For all } i, j:(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{x}_{i}-\tilde{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

Further, if $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0,1 / m)$, it satisfies the guarantee with high probability.

For $d=1$ trillion, $\epsilon=.05$, and $n=100,000, m \approx 6600$.
Very surprising! Powerful result with a simple construction: applying a random linear transformation to a set of points preserves distances between all those points with high probability.

Random Projection

For any $\vec{x}_{1}, \ldots, \vec{x}_{n}$ and $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0,1 / m)$, with high probability, letting $\tilde{\mathbf{x}}_{i}=\boldsymbol{\Pi} \vec{x}_{i}$:

$$
\text { For all } i, j:(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{\mathrm{x}}_{i}-\tilde{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

- Π is known as a random projection. It is a random linear function, mapping length d vectors to length m vectors.
- $\boldsymbol{\Pi}$ is data oblivious. Stark contrast to methods like PCA.

Algorithmic Considerations

- Many alternative constructions: ± 1 entries, sparse (most entries 0), Fourier structured, etc. \Longrightarrow more efficient computation of $\tilde{\mathbf{x}}_{i}=\boldsymbol{\Pi} \vec{x}_{i}$.
- Data oblivious property means that once $\boldsymbol{\Pi}$ is chosen, $\tilde{\mathrm{x}}_{1}, \ldots, \tilde{\mathrm{x}}_{n}$ can be computed in a stream with little memory.
- Memory needed is just $O(d+n m)$ vs. $O(n d)$ to store the full data set.
- Compression can also be easily performed in parallel on different servers.
- When new data points are added, can be easily compressed, without updating existing points.

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

Applying a random matrix $\boldsymbol{\Pi}$ to any vector \vec{y} preserves $\vec{y} s$ norm with high probability.

- Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
- Can be proven from first principles.
$\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d : original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL $\Longrightarrow \mathrm{JL}$

Distributional JL Lemma \Longrightarrow JL Lemma: Distributional JL show that a random projection $\boldsymbol{\Pi}$ preserves the norm of any y. The main JL Lemma says that $\boldsymbol{\Pi}$ preserves distances between vectors.

Since $\boldsymbol{\Pi}$ is linear these are the same thing!
Proof: Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$, define $\binom{n}{2}$ vectors $\vec{y}_{i j}$ where $\vec{y}_{i j}=\vec{x}_{i}-\vec{x}_{j}$.

- If we choose $\boldsymbol{\Pi}$ with $m=O\left(\frac{\log 1 / \delta}{\epsilon^{2}}\right)$, for each $\vec{y}_{i j}$ with probability $\geq 1-\delta$ we have:

Distributional JL $\Longrightarrow \mathrm{JL}$

Claim: If we choose $\boldsymbol{\Pi}$ with i.i.d. $\mathcal{N}(0,1 / m)$ entries and
$m=O\left(\frac{\log \left(1 / \delta^{\prime}\right)}{\epsilon^{2}}\right)$, letting $\tilde{x}_{i}=\boldsymbol{\Pi} \vec{x}_{i}$, for each pair \vec{x}_{i}, \vec{x}_{j} with probability
≥ 1 - δ^{\prime} we have:

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{\mathbf{x}}_{i}-\tilde{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

With what probability are all pairwise distances preserved?
Union bound: With probability $\geq 1-\binom{n}{2} \cdot \delta^{\prime}$ all pairwise distances are preserved.
Apply the claim with $\delta^{\prime}=\delta /\binom{n}{2}$. \Longrightarrow for $m=O\left(\frac{\log \left(1 / \delta^{\prime}\right)}{\epsilon^{2}}\right)$, all pairwise distances are preserved with probability $\geq 1-\delta$.
$m=O\left(\frac{\log \left(1 / \delta^{\prime}\right)}{\epsilon^{2}}\right)=O\left(\frac{\left.\log \binom{n}{2} / \delta\right)}{\epsilon^{2}}\right)=O\left(\frac{\log \left(n^{2} / \delta\right)}{\epsilon^{2}}\right)=O\left(\frac{\log (n / \delta)}{\epsilon^{2}}\right)$
Yields the JL lemma.

Distributional JL Proof

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

- Let \tilde{y} denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{\mathbf{y}}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\sum_{\boldsymbol{\pi}}^{d} \boldsymbol{g}_{i} \cdot \vec{y}(i)$ where $\mathrm{g}_{i} \sim \mathcal{N}(0,1 / m)$.

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection. d: original dim. m: compressed dim, ϵ : error, δ : failure prob.

Distributional JL Proof

- Let $\tilde{\mathbf{y}}$ denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{\mathbf{y}}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\sum_{i=1}^{d} \mathrm{~g}_{i} \cdot \vec{y}(i)$ where $\mathrm{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- $\mathrm{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$: normally distributed with variance $\frac{\vec{y}(i)^{2}}{m}$.

\boldsymbol{g}_{i}

$\boldsymbol{g}_{i} \cdot y(i)$

$\widetilde{\boldsymbol{y}}(j)=\left[\boldsymbol{g}_{1} \cdot y(1)+\boldsymbol{g}_{2} \cdot y(2\right.$

What is the distribution of $\tilde{y}(j)$? Also Gaussian!
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m: com-
pressed dimension, g_{i} : normally distributed random variable.

Distributional JL Proof

Letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$, we have $\tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle$ and:

$$
\tilde{y}(j)=\sum_{i=1}^{d} g_{i} \cdot \vec{y}(i) \text { where } \mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right) .
$$

Stability of Gaussian Random Variables. For independent $a \sim$ $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ we have:

$$
a+b \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Thus, $\tilde{y}(j) \sim \mathcal{N}\left(0, \frac{\vec{y}(1)^{2}}{m}+\frac{\vec{y}(2)^{2}}{m}+\ldots+\frac{\vec{y}(d)^{2}}{m} \frac{\|\vec{y}\|_{2}^{2}}{m}\right)$ I.e., \tilde{y} itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}:$ random
nroioctinn manning $\vec{v} \backslash \tilde{\prime} \Pi$ (i). ith roun of Π d. priginal dimoncinn m. com-

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right.$?

$$
\begin{aligned}
\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j=1}^{m} \tilde{y}(j)^{2}\right] & =\sum_{j=1}^{m} \mathbb{E}\left[\tilde{y}(j)^{2}\right] \\
& =\sum_{j=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m}=\|\vec{y}\|_{2}^{2}
\end{aligned}
$$

So ỹ has the right norm in expectation.
How is $\|\tilde{y}\|_{2}^{2}$ distributed? Does it concentrate?
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, $\mathrm{g}_{\text {: }}$ normally distributed random variable

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}(j)^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a ChiSquared random variable with m degrees of freedom,

$$
\operatorname{Pr}[|Z-\mathbb{E} Z|>\epsilon \mathbb{E} Z]<2 e^{-m \epsilon^{2} / 8}
$$

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

Write in terms of distances:
$\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{k}}\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}$

Example Application: k-means clustering

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{k}}\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}$ If we randomly project to $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions, for all pairs \vec{x}_{1}, \vec{x}_{2},

$$
(1-\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \leq\left\|\tilde{\mathbf{x}}_{1}-\tilde{\mathbf{x}}_{2}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \Longrightarrow
$$

$$
\text { Letting } \overline{\operatorname{cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\tilde{x}_{1}, \tilde{x}_{2} \in \mathcal{C}_{k}}\left\|\tilde{\mathrm{x}}_{1}-\tilde{\mathrm{x}}_{2}\right\|_{2}^{2}
$$

$$
(1-\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq \overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq(1+\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)
$$

Upshot: Can cluster in m dimensional space (much more efficiently) and minimize $\overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)$. The optimal set of clusters will have true cost within $1+C \epsilon$ times the true optimal. Good exercise to prove this.

