COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2022. Lecture 12

Logistics

- · Problem Set 2 is due Friday, 11:59pm.
- · No quiz this week.
- The exam will be held next Thursday in class.
- We will do some midterm review in class on Tuesday. I will also hold additional office hours for midterm prep, TBD.

Summary

Last Class: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction and low-distortion embeddings.
- Statement of the JL Lemma: we can obtain low-distortion embeddings for any set of points via random projection.

This Class:

- · Reduction of the JL Lemma to the 'distributional JL Lemma'.
- Proof of the distributional JL lemma.
- · Example application to clustering.

The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\mathbf{\Pi} : \mathbb{R}^d \to \mathbb{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \mathbf{\Pi} \vec{x}_i$:

For all
$$i, j$$
: $(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$.

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.

For d=1 trillion, $\epsilon=.05$, and n=100,000, $m\approx 6600$.

Very surprising! Powerful result with a simple construction: applying a random linear transformation to a set of points preserves distances between all those points with high probability.

Random Projection

For any $\vec{x}_1, \dots, \vec{x}_n$ and $\Pi \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, with high probability, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$:

For all
$$i, j : (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

- •
 • I is data oblivious. Stark contrast to methods like PCA.

Algorithmic Considerations

- Many alternative constructions: ± 1 entries, sparse (most entries 0), Fourier structured, etc. \Longrightarrow more efficient computation of $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{\mathbf{x}}_i$.
- Data oblivious property means that once Π is chosen, $\tilde{x}_1,\ldots,\tilde{x}_n$ can be computed in a stream with little memory.
- Memory needed is just O(d + nm) vs. O(nd) to store the full data set.
- Compression can also be easily performed in parallel on different servers.
- When new data points are added, can be easily compressed, without updating existing points.

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\Pi\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2$

Applying a random matrix Π to any vector \vec{y} preserves \vec{y} 's norm with high probability.

- Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
- · Can be proven from first principles.

 $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL \implies JL

Distributional JL Lemma \Longrightarrow **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \dots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $> 1 - \delta$ we have:

$$(1 \quad c) \| \vec{\sigma} \vec{\nabla} \vec{\nabla} \| \neq \| \mathbf{n} \vec{\sigma} \mathbf{n} (\vec{\nabla} \vec{\nabla}) \vec{\nabla} \vec{\nabla} \| \neq (1 + c) \| \vec{\sigma} \vec{\nabla} \vec{\nabla} \vec{\nabla} \|$$

Distributional $JL \implies JL$

Claim: If we choose Π with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_i\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_i\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_i\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \Longrightarrow for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$$

Yields the JL lemma.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{\mathbf{n}=1}^{d} \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_{i} \sim \mathcal{N}(0, 1/m)$.

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection. d: original dim. m: compressed dim, ϵ : error, δ : failure prob.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.

What is the distribution of $\tilde{\mathbf{v}}(i)$? Also Gaussian!

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_i : normally distributed random variable.

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{\mathbf{y}}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{\mathbf{y}} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}\left(0, \frac{\vec{\mathbf{y}}(i)^{2}}{m}\right).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \frac{\vec{\mathbf{y}}(1)^2}{m} + \frac{\vec{\mathbf{y}}(2)^2}{m} + \ldots + \frac{\vec{\mathbf{y}}(d)^2}{m} \frac{\|\vec{\mathbf{y}}\|_2^2}{m})$ I.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: $\vec{y} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: $\vec{y} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}} \in \mathbb{R}^d$: random rejection mapping $\vec{y} = \tilde{\mathbf{y}}$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\vec{\mathbf{y}}\|_{2}^{2}}{m} = \|\vec{\mathbf{y}}\|_{2}^{2}$$

So $\tilde{\mathbf{y}}$ has the right norm in expectation.

How is $\|\tilde{\mathbf{y}}\|_2^2$ distributed? Does it concentrate?

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_i : normally distributed random variable

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom,

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| > \epsilon \mathbb{E}\mathbf{Z}] < 2e^{-m\epsilon^2/8}$$

Example Application: k-means clustering

Goal: Separate *n* points in *d* dimensional space into *k* groups.

k-means Objective:
$$Cost(C_1, ..., C_k) = \min_{C_1, ..., C_k} \sum_{j=1}^{n} \sum_{\vec{x} \in C_k} ||\vec{x} - \mu_j||_2^2$$
.

Write in terms of distances:

$$Cost(C_1, ..., C_k) = \min_{C_1, ... C_k} \sum_{j=1}^{\kappa} \sum_{\vec{x}_1, \vec{x}_2 \in C_k} ||\vec{x}_1 - \vec{x}_2||_2^2$$

Example Application: k-means clustering

k-means Objective:
$$Cost(C_1, \dots, C_k) = \min_{C_1, \dots C_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in C_k} ||\vec{x}_1 - \vec{x}_2||_2^2$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1 - \epsilon) \|\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2\|_2^2 \le \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2 \le (1 + \epsilon) \|\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2\|_2^2 \implies$$

Letting
$$\overline{Cost}(\mathcal{C}_1, \dots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \dots \mathcal{C}_k} \sum_{j=1}^R \sum_{\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2 \in \mathcal{C}_k} \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2$$

$$(1-\epsilon)$$
Cost $(C_1,\ldots,C_k) \leq \overline{\text{Cost}}(C_1,\ldots,C_k) \leq (1+\epsilon)$ Cost (C_1,\ldots,C_k) .

Upshot: Can cluster in m dimensional space (much more efficiently) and minimize $\overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k)$. The optimal set of clusters will have true cost within $1+c\epsilon$ times the true optimal. Good exercise to prove this.