COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2022. Lecture 12

- Problem Set 2 is due Friday, 11:59pm.
- No quiz this week.
- The exam will be held next Thursday in class.
- We will do some midterm review in class on Tuesday. I will also hold additional office hours for midterm prep, TBD.

Last Class: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction and low-distortion $\hat{\chi}_1 = \hat{\chi}_1 \in \mathbb{R}^2$ Embeddings.
- embeddings for any set of points via random projection.

Last Class: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction and low-distortion embeddings.
- Statement of th<u>e JL Lemm</u>a: we can obtain low-distortion embeddings for any set of points via random projection.

This Class:

- Reduction of the JL Lemma to the 'distributional JL Lemma'.
- Proof of the distributional JL lemma.
- Example application to clustering.

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\Pi : \mathbb{R}^d \to \mathbb{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \Pi \vec{x}_i$:

For all i, j: $(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$.

Further, if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.

For d = 1 trillion, $\epsilon = .05$, and n = 100,000, $m \approx 6600$.

Very surprising! Powerful result with a simple construction: applying a random linear transformation to a set of points preserves distances between all those points with high probability.

4

Random Projection

For any $\vec{x}_1, \ldots, \vec{x}_n$ and $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, with high probability, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$:

For all $i, j: (1-\epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1+\epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$

Random Projection

For any $\vec{x}_1, \ldots, \vec{x}_n$ and $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, with high probability, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$:

For all $i, j: (1-\epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1+\epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$

 Is known as a random projection. It is a random linear function, mapping length d vectors to length m vectors.

Random Projection

For any $\vec{x}_1, \ldots, \vec{x}_n$ and $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, with high probability, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$: $\xi \geq 0$ $\xi < 1$

- Is known as a random projection. It is a random linear function, mapping length d vectors to length m vectors.
- **П** is data oblivious. Stark contrast to methods like PCA.

Many alternative constructions: <u>±1 entries</u>, sparse (most entries 0), Fourier structured, etc. ⇒ more efficient computation of x̃_i = Πx̃_i.

- Many alternative constructions: ±1 entries, sparse (most entries 0), Fourier structured, etc. ⇒ more efficient computation of x
 i = **Π***x i*.
- · Data oblivious property means that once Π is chosen, $\mathbf{\tilde{x}}_1, \dots, \mathbf{\tilde{x}}_n$ can be computed in a stream with little memory.
- Memory needed is just $O(\underline{d} + \underline{nm})$ vs. $O(\underline{nd})$ to store the full data set.

- Many alternative constructions: ±1 entries, sparse (most entries 0), Fourier structured, etc. ⇒ more efficient computation of x
 _i = Πx
 _i.
- Data oblivious property means that once Π is chosen, $\tilde{x}_1,\ldots,\tilde{x}_n$ can be computed in a stream with little memory.
- Memory needed is just O(d + nm) vs. O(nd) to store the full data set.
- Compression can also be easily performed in parallel on different servers.

- Many alternative constructions: ±1 entries, sparse (most entries 0), Fourier structured, etc. ⇒ more efficient computation of x
 x i = **Π***x i*.
- Data oblivious property means that once Π is chosen, $\tilde{x}_1,\ldots,\tilde{x}_n$ can be computed in a stream with little memory.
- Memory needed is just O(d + nm) vs. O(nd) to store the full data set.
- Compression can also be easily performed in parallel on —different servers.
- When new data points are added, can be easily compressed, without updating existing points.

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\Pi\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2$

 $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

Applying a random matrix $\mathbf{\Pi}$ to any vector \vec{y} preserves \vec{y} 's norm with high probability.

 $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\mathbf{\Pi}\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2$

Applying a random matrix $\mathbf{\Pi}$ to any vector \vec{y} preserves \vec{y} 's norm with high probability.

• Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.

Can be proven from first principles.

 $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Lemma \implies **JL Lemma**: Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since **Π** is linear these are the same thing!

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors $\underline{\vec{y}_{ij}}$ where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose $\mathbf{\Pi}$ with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta$ we have: $(1 - \epsilon) \|\vec{y}_{ij}\|_2 \leq \|\mathbf{\Pi}\vec{y}_{ij}\|_2 \leq (1 + \epsilon) \|\vec{y}_{ij}\|_2$

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta$ we have:

$$(1-\epsilon) ||\vec{x}_i - \vec{x}_j||_2 \le ||\Pi(\vec{x}_i - \vec{x}_j)||_2 \le (1+\epsilon) ||\vec{x}_i - \vec{x}_j||_2$$
$$||\Pi(\vec{x}_i - \Pi(\vec{x}_j))|_2$$
$$||\Pi(\vec{x}_i - \tilde{x}_j)||_2 \le ||\Pi(\vec{y}_i)||_2$$

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq \underline{1-\delta}$ we have: $(1-\epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \leq \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \leq (1+\epsilon) \|\vec{x}_i - \vec{x}_j\|_2$

Claim: If we choose Π with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_{\underline{i}} = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\tilde{\mathbf{x}}_i-\tilde{\mathbf{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$$

Claim: If we choose Π with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each <u>pair \vec{x}_i, \vec{x}_j </u> with probability $\geq 1 - \delta'$ we have:

$$(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\tilde{\mathbf{x}}_i-\tilde{\mathbf{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$.

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\tilde{\mathbf{x}}_i-\tilde{\mathbf{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta / {n \choose 2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\mathbf{\tilde{x}}_i = \mathbf{\Pi} \mathbf{\tilde{x}}_i$, for each pair $\mathbf{\tilde{x}}_i, \mathbf{\tilde{x}}_j$ with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$$

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\mathbf{\tilde{x}}_i = \mathbf{\Pi} \mathbf{\tilde{x}}_i$, for each pair $\mathbf{\tilde{x}}_i, \mathbf{\tilde{x}}_j$ with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right)$$

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\mathbf{\tilde{x}}_i = \mathbf{\Pi} \mathbf{\tilde{x}}_i$, for each pair $\mathbf{\tilde{x}}_i, \mathbf{\tilde{x}}_j$ with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right)$$

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved. Apply the claim with $\delta' = \delta / \binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all $O\left(\frac{\log 1}{\epsilon^2}\right)$ pairwise distances are preserved with probability $\geq 1 - \delta$. $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2})/\delta}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$$

Yields the JL lemma.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\Pi \vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2$

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection. *d*: original dim. *m*: compressed dim, ϵ : error, δ : failure prob.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

• Let $\underline{\tilde{y}}$ denote $\underline{\Pi}\underline{\vec{y}}$ and let $\underline{\Pi}(\underline{j})$ denote the j^{th} row of Π .

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection. *d*: original dim. *m*: compressed dim, ϵ : error, δ : failure prob.

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any $j, \underline{\tilde{y}}(j) = \langle \Pi(j), \vec{y} \rangle$

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection. *d*: original dim. *m*: compressed dim, ϵ : error, δ : failure prob.

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any *j*, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection. *d*: original dim. *m*: compressed dim, ϵ : error, δ : failure prob.

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

• Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection. *d*: original dim. *m*: compressed dim, ϵ : error, δ : failure prob.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any $j, \tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \sim \mathcal{N}(0, 1/m)$.
- $\underline{g}_i \cdot \underline{y}(i) \sim \mathcal{N}(0, \frac{\overline{y}(i)^2}{m})$: normally distributed with variance $\frac{\overline{y}(i)^2}{m}$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any $j, \tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \underbrace{\mathcal{N}(0, \frac{\vec{y}(i)^2}{m})}_{m}$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.

What is the distribution of $\tilde{\mathbf{y}}(j)$?

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.

What is the distribution of $\tilde{\mathbf{y}}(j)$? Also Gaussian!

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\underbrace{\tilde{\mathbf{y}}(j)}_{i \equiv 1} = \sum_{i \equiv 1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{y}$. $\Pi(j)$: *j*th row of Π , *d*: original dimension. *m*: compressed dimension, g_i : normally distributed random variable

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \frac{\vec{y}(1)^2}{m} + \frac{\vec{y}(2)^2}{m} + \dots + \frac{\vec{y}(d)^2}{m}) - \frac{1}{m} \lesssim \mathbf{y}(i)^2 - \frac{1}{m} \|\mathbf{y}\|_{\mathcal{V}}$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \frac{\|\vec{\mathbf{y}}\|_2^2}{m})$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \frac{\|\vec{\mathbf{y}}\|_2^2}{m})$ I.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{y} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$ What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]? = \|\mathbf{y}\|_{\mathcal{L}}^2$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right]$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \underbrace{\sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]}_{j=1}$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\widetilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_{2}^{2}/m).$ What is $\mathbb{E}[\|\widetilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \widetilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\widetilde{\mathbf{y}}(j)^{2}]$ $= \sum_{j=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m} = \|\mathbf{y}\|_{\mathcal{N}}^{2}$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{i=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m} = \|\vec{y}\|_{2}^{2}$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m} = \|\vec{y}\|_{2}^{2}$$

So $\tilde{\boldsymbol{y}}$ has the right norm in expectation.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$
$$= \sum_{i=1}^m \frac{\|\vec{y}\|_2^2}{m} = \|\vec{y}\|_2^2$$

So $\tilde{\boldsymbol{y}}$ has the right norm in expectation.

How is $\|\tilde{\mathbf{y}}\|_2^2$ distributed? Does it concentrate?

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \|\vec{y}\|_2^2$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $ilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|ec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \|ec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \left\{ \tilde{\mathbf{y}}(i) \right\}$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $ilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|ec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{ ilde{y}}\|_2^2] = \|ec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $ilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|ec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{ ilde{y}}\|_2^2] = \|ec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom, $\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$: テリショルシェリシン $ilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|ec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|ec{\mathbf{y}}\|_2^2] = \|ec{\mathbf{y}}\|_2^2$ $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians) Lemma: (Chi-Squared Concentration) Letting Z be a Chi-. Squared random variable with *m* degrees of freedom, $|y||^{1/2}$, ε $|y||_{1}^{1/2} \cdot |y||_{1}^{1/2} \approx \varepsilon ||y||_{1}^{1/2}$ $\Pr[|Z - \mathbb{E}Z| \ge \varepsilon \mathbb{E}Z] \le 2e^{-m\varepsilon^{2}/8}$.

If we set
$$\underline{m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)}$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
 $(1 - \epsilon) \|\vec{y}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon) \|\vec{y}\|_2^2$.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $ilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|ec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{ ilde{y}}\|_2^2] = \|ec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom,

 $\Pr\left[|\mathsf{Z} - \mathbb{E}\mathsf{Z}| \ge \epsilon \mathbb{E}\mathsf{Z}\right] \le 2e^{-m\epsilon^2/8}.$

If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$: $(1 - \epsilon) \|\vec{y}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon) \|\vec{y}\|_2^2$.

Gives the distributional JL Lemma and thus the classic JL Lemma!

Goal: Separate *n* points in *d* dimensional space into *k* groups.

Goal: Separate *n* points in *d* dimensional space into *k* groups.

k-means Objective: $Cost(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1} \sum_{\vec{x} \in C_k} \|\vec{x} - \mu_j\|_2^2.$

Goal: Separate n points in d dimensional space into k groups.

k-means Objective:
$$Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$

k-means Objective:
$$Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1-\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \le \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2 \le (1+\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2$$

k-means Objective:
$$Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1-\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \le \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2 \le (1+\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \implies$$

Letting
$$\overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) = \min_{\mathcal{C}_1,\ldots,\mathcal{C}_k} \sum_{j=1}^k \sum_{\tilde{\mathbf{x}}_1,\tilde{\mathbf{x}}_2 \in \mathcal{C}_k} \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2$$

 $(1-\epsilon)$ Cost $(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq \overline{\text{Cost}}(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq (1+\epsilon)$ Cost $(\mathcal{C}_1,\ldots,\mathcal{C}_k)$.

k-means Objective:
$$Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1-\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \le \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2 \le (1+\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \implies$$

Letting
$$\overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) = \min_{\mathcal{C}_1,\ldots,\mathcal{C}_k} \sum_{j=1}^k \sum_{\tilde{\mathbf{x}}_1,\tilde{\mathbf{x}}_2 \in \mathcal{C}_k} \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2$$

 $(1-\epsilon)$ Cost $(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq \overline{\text{Cost}}(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq (1+\epsilon)$ Cost $(\mathcal{C}_1,\ldots,\mathcal{C}_k)$.

Upshot: Can cluster in *m* dimensional space (much more efficiently) and minimize $\overline{Cost}(C_1, \ldots, C_k)$. The optimal set of clusters will have true cost within $1 + c\epsilon$ times the true optimal. Good exercise to prove this.