COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2022.
Lecture 12

- Problem Set 2 is due Friday, 11:59pm.
- No quiz this week.
- The exam will be held next Thursday in class.

- We will do some midterm review in class on Tuesday. | will also
hold additional office hours for midterm prep, TBD.

d
. X _ Xn <K
Last Class: The Johnson-Lindenstrauss Lemma - \ ~
R | T B 13
- Intro to dimensionality reduction and low-distortion ¥, .- ~”*"

embeddings.

- Statement of the JL Lemma: we can obtain low-distortion
embeddings for any set of points via random projection.

Last Class: The Johnson-Lindenstrauss Lemma
- Intro to dimensionality reduction and low-distortion
embeddings.
- Statement of the JL Lemma: we can obtain low-distortion
embeddings for any set of points via random projection.

This Class:

- Reduction of the JL Lemma to the ‘distributional JL Lemma’.
- Proof of the distributional JL lemma.

- Example application to clustering.

Johnson-Lindenstrauss Lemma: For any set of points
w@d and e > O there exists a linearmap M : Rd - R" R™
suchthatm =0 ('°g”) and letting % = NX;:

—_\ & Y — oA

Foralli,j: (1=e)lX =Xl < II%i = Xjll2 < (1 + 1% — l2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, e = .05, and n = 100, 000, m = 6600.

Very surprising! Powerful result with a simple construction: applying
a random linear transformation to a set of points preserves
distances between all those points with high probability.

QMH]

The Johnson-Lindenstrauss Lemma

Random Projection

Forany Xi,...,X, and M € R™<9 with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = MX;:

Foralli,j: (T=e)llXi = Xll2 < % = Xilla < (1+)X — Xill2-

mxd dx1 mx1
0112 34 67 10 —.49..
=45 7 14 18 — 65 76..
= x
n
f
random linear transformation
(random projection) compressed output point
(low dimensions)
logn
m=0 (gz)
€ ol
input point
(high dimensions)

Random Projection

Forany Xi,...,X, and M € R™<9 with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = MX;:

Foralli,j: (T=e)llXi = Xll2 < % = Xilla < (1+)X — Xill2-

mxd dx1 mx1
0112 34 67 10 —.49..
—45_ 7 14 18 — 65 76..
x| =
n
f
random linear transformation
(random projection) compressed output point
(low dimensions)
logn
m=0 (gz)
€ ol
input point
(high dimensions)

- Mis known as a random projection. It is a random linear
function, mapping length d vectors to length m vectors.

Random Projection

Forany Xi,...,X, and M € R™<9 with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = MX: >0 g<l
Foralli,j: (1—¢)lIXi —Xill2 < 1% — Xill2 < (Lt e)IIX; — X|2-
W) = —
Q\T“ mxd dx1 mx1
. ER [T
- n i =
f
—_—
-random linear transformation
(random projection) compressed output point
(low dimensions)
logn
m=0(€2) .
input point
|| (high dimensions)

- Mis known as a random projection. It is a random linear
function, mapping length d vectors to length m vectors.

- M is data oblivious. Stark contrast to methods like PCA.

Algorithmic Considerations

- Many alternative constructions: +1 entries, sparse (most
entries 0), Fourier structured, etc. = more efficient
computation of X; = MX..

Algorithmic Considerations

- Many alternative constructions: +1 entries, sparse (most
entries 0), Fourier structured, etc. = more efficient
computation of X; = MX..

-fﬁoblivious property means that once M is chosen,
X1,...,Xp can be computed in a stream with little memory.

* Memory needed is just O(d + nm) vs. O(nd) to store the
full data set. v -

Algorithmic Considerations

- Many alternative constructions: +1 entries, sparse (most
entries 0), Fourier structured, etc. = more efficient
computation of X; = MX;.

- Data oblivious property means that once M is chosen,
X1,...,Xn can be computed in a stream with little memory.

- Memory needed is just O(d + nm) vs. O(nd) to store the
full data set.

- Compression can also be easily performed in parallel on
different servers.

Algorithmic Considerations

- Many alternative constructions: +1 entries, sparse (most
entries 0), Fourier structured, etc. = more efficient
computation of X; = MX;.

- Data oblivious property means that once M is chosen,
X1,...,Xn can be computed in a stream with little memory.

- Memory needed is just O(d + nm) vs. O(nd) to store the

full data set.

- Compression can also be easily performed in parallel on

ifferent servers.

- When new data points are added, can be easily

compressed, without updating existing points.

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

7~

Distributional JL Lemma: Let M € R™*Y have each entry cho-

R N _ (Iogﬂ/é)
sen i.i.d. as N(0,1/m). If we set m = O T) then for any

V € R, with probability > 1§
[
(1=l < [NYll2 < (14 €)lI¥ll2

—_—

N e R™*%: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob. 7

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O ("’ﬂ%) then for any
y € RY, with probability >1—§

(1=l < INYll2 < (1+ &)I¥l2

.

Applying a random matrix I to any vector y preserves y's norm with
high probability.

N e R™*%: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob.

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O ("’ﬂ%) then for any
y € RY, with probability >1—§

—

(1=l < INYll2 < (1+)I¥l2
-_—

——

.

Applying a random matrix I to any vector y preserves y's norm with
high probability.
- Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

Z- Can be proven from first principles.é

N e R™*%: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob.

Distributional JL =

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, . em-
bedding error, 6: embedding failure prob. 8

Distributional JL =

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, . em-
bedding error, 6: embedding failure prob. 8

Distributional JL =

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

. . R n R S o o
Proof: Given Xy, ..., Xy, define (2) vectors)_/vahere Vij = Xi — X;.
X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random

projection matrix. d: original dimension. m: compressed dimension, . em-
bedding error, 6: embedding failure prob. 8

Distributional JL =

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.
b

X4
X2

X4

y

X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, . em-
bedding error, 6: embedding failure prob. 8

Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.

- If we choose Mwithm =0 ('ng) for each yj; with probability

>1-0 have: N
> we have £

(1— 6)Hyl/”Z < ||nylj||2 (T+ 6)Hyl/HZ

X1, ..., %n: original points, X1, ..., %n: compressed points, M € R™*%: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 8

Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.

- If we choose Mwithm =0 ('ng) for each yj; with probability
>1— 6 we have:

(1 *EMZ <IN = X))l < (1 + IIX; — Xlla
))T\—X}’(ﬁ\()ni

G- Kyl e 1Tyl

X1, ..., %n: original points, X1, ..., %n: compressed points, M € R™*%: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 8

Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!
Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.

- If we choose M with mﬂ"’g\;/‘s) for each yj; with probability

>1—§ we have:

(1= X = Xlla < 11X = X[l < (1 +)lIXi = Xl
e S

X1, ..., %n: original points, X1, ..., %n: compressed points, M € R™*%: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 8

Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) lettmg = I'Ix,, for each pair X;, X; with probability
>1— 4" we have:

(1= eI = Xilla < [1%i = Kjll2 < (1 +)lIX; — K-

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 9

Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xill2 < (1 +) lIXi = Xilla-
With what probability are all pairwise distances preserved?

CORNERC

e

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.

Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T +) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
e
preserved.

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.

Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:

(1= OIXi = Xill2 < 1% — Xjll2 < (T +) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are

preserved.
; ; ’r_ n -
Apply the claim with ¢’ = §/(5)- | (S
X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random

projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.

Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = NX;, for each pMWith probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T +) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
preserved.

€

Apply the claim with & = §/(]). = form =0 (M), all
pairwise distances are preserved with probability > 1 — 4.
—_— I

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.

Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T +) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
preserved.

Apply the claim with & = §/(). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 4.

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.

Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T +) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
preserved.

Apply the claim with & = §/(). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 4.

~0 <'°g(:2/5)> 0 ('Og(iz)/5)>

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.

Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T +) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (g) -¢’ all pairwise distances are
preserved.

Apply the claim with & = §/(). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 4.

e <'°g(12/5)> i <|og((2)/6)> Y (mg(nj/a))

X1,...,%n: original points, %, . . ., %Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.

Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 ('“5(2%,)) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:

(1= elIXi = Xjll2 < 1% — Xjll2 < (1+ €)lIX; — Xill2-
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (”2) -¢’ all pairwise distances are
preserved. d

, oy
Apply the claim with &' = §/(1). = fOme/)). all th\,

€

pairwise distances &fe preserved with probability > T—=.

m=0 <|og(12/5')> _ g (Iog((%)/é)) 0 (bg(ﬁ;/&) o (ee/9)
X1y ..., %Xn: original points, X1, ..., %n: compressed points, I € R4 random

projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.

Distributional JL = JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=20 (M> letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(1= OIXi = Xill2 < 1% — Xjll2 < (T +) [IX; — Xl
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (7) - ¢’ all pairwise distances are
preserved.

Apply the claim with & = §/(). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 4.

o (lg(va)> . <|og((€2)/5)> 5 (log(gj/a)) 0 <|g<n/o>>

Yields the JL lemma.

Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as N(0,1/m). If we set m = O (M) then for any

y € RY with probability > 1 -6
—_— S

(1=l < INYll2 < (1+)I¥l2
——/’¢\

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 10

Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as N(0,1/m). If we set m = O (M) then for any

v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

* Lety denote My and let N(j) denote the j' row of .

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 10

Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as M(0,1/m). If we setm = O ('°g“/5) then for any

v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

- Lety denote I'Iy and let N(j) denote the j row of M.
- Foranyj, y)7}

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 10

Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as M(0,1/m). If we setm = O ('°g“/5) then for any

v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

- Lety denote I'Iy and let N(j) denote the j row of M.
- Foranyj, y 1),

n
1G) ;
D e e | N h')
'\.(,..

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 10

Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as M(0,1/m). If we setm = O ('°g“/5) then for any
v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

- Lety denote I'Iy and let N(j) denote the j row of M.

- For any j, y(j))7} ng, ()vvhereg,~N(O T/m).

O~ O . ,
‘&03 L)\ ©5Y6 20) il

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob.

Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.
. Forany;y),V) = Z, 18 - Y(i) where g ~ N(0,1/m).
—_—

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 1

Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.

- Forany j, y(j 1), %) }_Q_J where g; ~ N'(0,1/m).

- g -Y() N/\/(O y(’)) normally distributed with variance (m) :

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.

1

Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.

- For any j, y(j))9 =% g - §(i) where g ~ N'(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

i 1 y(®?
variance variance —=—

m 1 m
[\ I 1

VANV AN

gi gi-y()

LS -

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 1

Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.
- For any j, y(j)),V) = Z, 18 - Y(i) where g ~ N(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

variance 222 y@?

2
variance 2= —*- variance ——

t—‘—\r—‘—\l—‘—\

SAAICRIAN

y(/) 9. -y() + 92y y(2) + . + gd - y(d)]
(Vo N)
56 (o, £ %)

¥ € RY arbitrary vector, y € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.

1

Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.
- For any j, y(j)),V) = Z, 18 - Y(i) where g ~ N(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

y(2)?
variance —— (@2

2 .
variance £ ™ variance -

e T ——

A+/\+ j\

Yy =g -y + g2 y(2) + ... + gn-y(d)]

What is the distribution of y(j)?

¥ € RY arbitrary vector, y € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.

1

Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.
- For any j, y(j)),V) = Z, 18 - Y(i) where g ~ N(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

y(2)?
variance —— (@2

2 .
variance £ ™ variance -

e T ——

A+/\+ j\

Yy =g -y + g2 y(2) + ... + gn-y(d)]

What is the distribution of y(j)? Also Gaussian!

¥ € RY arbitrary vector, y € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.

1

Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j),) and:

=S 0 where @500 (0,500
90 =28 i where g 70 N(Lm\)

¥ € R® arbitrary vector, j € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

12

Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j),) and:

d oy
S =N g o y(i)?
Y() =Y _ g - y(i) where g; - J(i) ~ N (o, m> .

i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N + p, 0 + 03)

—_—

¥ € R® arbitrary vector, j € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

12

Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j),) and:

d oy
S =N g o y(i)?
Y() =Y _ g - y(i) where g; - J(i) ~ N (o, m> .

i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N + p, 0 + 03)

VANYINLIVANS

¥ € R® arbitrary vector, j € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

12

Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j),y) and:
s (i)’
70) = Y- & 50) where g) ~ v (0.5

i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N+ p2, 07 + 03)

> —

Thus, y NLW TR0)) —n‘n ijml ‘-;’j H&H

m

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

12

Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j),y) and:
s (i)’
70) = Y- g) where g) ~ v (0.5).

=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N+ p2, 07 + 03)

)

=i

Thus, y(j) ~ N(O0,

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

12

Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j),) and:

d oy
S =N g o y(i)?
Y() =Y _ g - y(i) where g; - J(i) ~ N (o, m> .

i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N + p, 0 + 03)

Thus, y(j) ~ N(0, %) l.e. y itself is a random Gaussian vector.
Rotationalinvariance of the Gaussian distribution.

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

12

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A(0,1/m),

7 e R ine U — M-
forany y € RY lettingy = Ny:

y() ~ N, [I71l/m)-
—

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

13

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N (0, [713/m).
What is E[|y[2]? = llgh?;‘

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

13

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, [713/m).
What is E[||§|2]?

E[§]5] =E | >_¥()
j=1

_

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

13

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, [713/m).
What is E[||§|2]?

E[I§I5]=E | >_V0)*| = > EN()]
=1 = —

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

13

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, |73/m).
What is E[||§|2]?

E[I15] = E | Y _¥0)*| = > EF()]
j=1

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

13

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:
y(j) ~ N (O, [IV1I3/m).

What is E[||y]2]? \IMU"SL@
r

EV()’]

WE

E[II5] =E | Y ()| =
j=1

-
Il
N

NN

Iyl
m

= \\\th

I
NE

1

—.
I

|

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable 3

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),

forany y € RY, letting y = Ny:

§(j) ~ N0, [713/m).
What is E[||§|2]?

E[I915] = E | > _¥0)*| =D E[()]
j=1 =1

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

13

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, [713/m).
What is E[||§|2]?

E[I915] = E | > _¥0)*| =D E[()]
j=1 =1

N

So y has the right norm in expectatlon.

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

13

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, [713/m).
What is E[||§|2]?

B =B | S 907 = 3 B0
j=1 j=1
= Wy
=1

So y has the right norm in expectation.

How%tributed? Does it concentrate?

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

13

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

y() ~ N0, [I7ll2/m) and E[|[y[5] = (1713

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, e: embedding error, 6: embedding failure prob. 1%

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),

forany y € RY, letting y = Ny:
y(j) ~ N (0, [[¥]13/m) and E[[[y[I3] = [I¥]l5

Y]
freedom (a sum of m squared independent Gaussians)

2 =>" y(jﬁ a Chi-Squared random variable with m degrees of

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, e: embedding error, 6: embedding failure prob.

14

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),

forany y € RY, letting y = Ny:
y(j) ~ N (0, [[¥]13/m) and E[|[y[I3] = [I¥]l3

19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)
filx) v
0.5
0.4

0.3

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, e: embedding error, 6: embedding failure prob.

14

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

y(j) ~ N(0, [I¥[15/m) and E[I§|I5] = [IVI5
19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr[|Z — EZ| > EZ] < 2e~M</8,

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-

pressed dimension, e embedding error, 6: embedding failure prob. 14

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:
/\’“\<}\"—\~v§:\, - 12 21121 — 117112 ééh
) y() ~ N (0, [[¥ll5/m) and E[[[y[I2] = [I¥]l> —

freedom (a sum of m squared independent Gaussians)

v 2; =>"".¥(j)? a Chi-Squared random variable with m degrees ob(\sé?%
—_—

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-

Mgy -l 2 € iy i
Pr[|Z — EZ| > €EZ] g_@;@ o

A"
Squared random vagjable with dlqgrees of freedom, \» . € I
- Y%

If wesetm=0 ! "’gﬁﬂ) with probability 1 — O(e~'&(//9)) > 1 — 4

(1= IVIz < I9llz < (0 + €)lIYI3-

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, e embedding error, 6: embedding failure prob.

14

Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

y(j) ~ N (0, [I¥1I3/m) and E[|[§[I3] = IV]l3
19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr[|Z — EZ| > EZ] < 2e~M<'/8,

If we setm =0 <'°g 1/2)) with probability 1— O(e~'0&(1/%)) > 1 — §:

(1= IVIIZ < 112 < (1+ e)I¥3-

ives the distributional JL Lemma and thus the classic JL Lemmal!

14

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

15

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

o
([
oy
o ° [Y]
[)
O U2
° o
P ([
o
k-means Objective: Cost(Cy, ... = min Z > UK = 3.

1 1 XeCy,

15

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

o
;1 ®
U
o ° v
° ~ v=
O H P >(‘ - - ><,\
P ([
o
k-means Objective: Cost(C;, . .. = min, Z > UK = 3.
"= Rec———
. . . ~ ~y v
Write in terms of distances: [, - % b

Cost(Cy,...,Cr) = Cmin 1% — %[5
R Xzecm’"?é 15

Example Application: k-means clustering

k
k-means Objective: Cost(C,...,C) = min, S K -%l?
1,..-Cp

J=1 X1,%€C,

16

Example Application: k-means clustering

k-means Objective: Cost(Cy,...,Cy) = Jmin Z > IK =%l

I =1 X%,%€Cy,

If we randomly projecttom =0 ('°g”) dimensions, for all pairs X, X,

(1=)Xy = Xal5 < [I% = Rall5 < (V+ €)% — XI5

16

Example Application: k-means clustering

k-means Objective: Cost(Cy,...,Cy) = Jmin Z > IK =%l

I =1 X%,%€Cy,

If we randomly projecttom =0 ('°g”) dimensions, for all pairs X, X,

(1=)% = Xoll5 < 1% = Roll3 < (1 + €)% — %ol =

Letting Cost(Cy, ..., C) = m.nckz > IK = %o
J=1 X1, %2 €C

(1= €)Cost(Cy,...,Cx) < Cost(Cy,...,Ck) < (14 €)Cost(Ca,...,Ck).

16

Example Application: k-means clustering

k-means Objective: Cost(Cy,...,Cy) = Jmin Z > IK =%l

I =1 X%,%€Cy,

If we randomly projecttom =0 ('°g”) dimensions, for all pairs X, X,

(1= 9% =Rl < 1% — %[< (1 +)l — R} =

Letting Cost(Cy, ..., C) = Zmin, Z > IK = %o

J 1 X1,%€Cy,
(1= €)Cost(Cy,...,Cx) < Cost(Cy,...,Ck) < (14 €)Cost(Ca,...,Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(Cs, ..., Ck). The optimal set of clusters
will have true cost within 1+ ce times the true optimal. Good
exercise to prove this.

16

