
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2022.
Lecture 12

1

Logistics

• Problem Set 2 is due Friday, 11:59pm.
• No quiz this week.
• The exam will be held next Thursday in class.
• We will do some midterm review in class on Tuesday. I will also
hold additional office hours for midterm prep, TBD.

2

Summary

Last Class: The Johnson-Lindenstrauss Lemma

• Intro to dimensionality reduction and low-distortion
embeddings.

• Statement of the JL Lemma: we can obtain low-distortion
embeddings for any set of points via random projection.

This Class:

• Reduction of the JL Lemma to the ‘distributional JL Lemma’.

• Proof of the distributional JL lemma.

• Example application to clustering.

3

X , . . . X nC-
Rd

-
I , I - In412"

T

Summary

Last Class: The Johnson-Lindenstrauss Lemma

• Intro to dimensionality reduction and low-distortion
embeddings.

• Statement of the JL Lemma: we can obtain low-distortion
embeddings for any set of points via random projection.

This Class:

• Reduction of the JL Lemma to the ‘distributional JL Lemma’.

• Proof of the distributional JL lemma.

• Example application to clustering.

3

,

The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points
x⃗1, . . . , x⃗n ∈ Rd and ϵ > 0 there exists a linear mapΠ : Rd → Rm

such that m = O
(

log n
ϵ2

)
and letting x̃i = Πx⃗i:

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

Further, if Π ∈ Rm×d has each entry chosen i.i.d. from
N (0, 1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, ϵ = .05, and n = 100, 000, m ≈ 6600.

Very surprising! Powerful result with a simple construction: applying
a random linear transformation to a set of points preserves
distances between all those points with high probability.

4

= = - Y i '

[" Jf)= I i)

Random Projection

For any x⃗1, . . . , x⃗n and Π ∈ Rm×d with each entry chosen i.i.d. from
N (0, 1/m), with high probability, letting x̃i = Πx⃗i:

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

• Π is known as a random projection. It is a random linear
function, mapping length d vectors to length m vectors.

• Π is data oblivious. Stark contrast to methods like PCA.

5

=

-

Random Projection

For any x⃗1, . . . , x⃗n and Π ∈ Rm×d with each entry chosen i.i.d. from
N (0, 1/m), with high probability, letting x̃i = Πx⃗i:

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

• Π is known as a random projection. It is a random linear
function, mapping length d vectors to length m vectors.

• Π is data oblivious. Stark contrast to methods like PCA.

5

Random Projection

For any x⃗1, . . . , x⃗n and Π ∈ Rm×d with each entry chosen i.i.d. from
N (0, 1/m), with high probability, letting x̃i = Πx⃗i:

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

• Π is known as a random projection. It is a random linear
function, mapping length d vectors to length m vectors.

• Π is data oblivious. Stark contrast to methods like PCA.
5

E >O { < l

- - -

÷E÷
x . . . - x .

¥

Algorithmic Considerations

• Many alternative constructions: ±1 entries, sparse (most
entries 0), Fourier structured, etc. =⇒ more efficient
computation of x̃i = Πx⃗i.

• Data oblivious property means that once Π is chosen,
x̃1, . . . , x̃n can be computed in a stream with little memory.

• Memory needed is just O(d+ nm) vs. O(nd) to store the
full data set.

• Compression can also be easily performed in parallel on
different servers.

• When new data points are added, can be easily
compressed, without updating existing points.

6

-

Algorithmic Considerations

• Many alternative constructions: ±1 entries, sparse (most
entries 0), Fourier structured, etc. =⇒ more efficient
computation of x̃i = Πx⃗i.

• Data oblivious property means that once Π is chosen,
x̃1, . . . , x̃n can be computed in a stream with little memory.

• Memory needed is just O(d+ nm) vs. O(nd) to store the
full data set.

• Compression can also be easily performed in parallel on
different servers.

• When new data points are added, can be easily
compressed, without updating existing points.

6

T
- - -

Algorithmic Considerations

• Many alternative constructions: ±1 entries, sparse (most
entries 0), Fourier structured, etc. =⇒ more efficient
computation of x̃i = Πx⃗i.

• Data oblivious property means that once Π is chosen,
x̃1, . . . , x̃n can be computed in a stream with little memory.

• Memory needed is just O(d+ nm) vs. O(nd) to store the
full data set.

• Compression can also be easily performed in parallel on
different servers.

• When new data points are added, can be easily
compressed, without updating existing points.

6

Algorithmic Considerations

• Many alternative constructions: ±1 entries, sparse (most
entries 0), Fourier structured, etc. =⇒ more efficient
computation of x̃i = Πx⃗i.

• Data oblivious property means that once Π is chosen,
x̃1, . . . , x̃n can be computed in a stream with little memory.

• Memory needed is just O(d+ nm) vs. O(nd) to store the
full data set.

• Compression can also be easily performed in parallel on
different servers.

• When new data points are added, can be easily
compressed, without updating existing points.

6

f-
-

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

Applying a random matrix Π to any vector y⃗ preserves y⃗’s norm with
high probability.

• Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

• Can be proven from first principles.

Π ∈ Rm×d : random projection matrix. d: original dimension. m: compressed
dimension, ϵ: embedding error, δ: embedding failure prob. 7

- =
- -

- - -

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

Applying a random matrix Π to any vector y⃗ preserves y⃗’s norm with
high probability.

• Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

• Can be proven from first principles.

Π ∈ Rm×d : random projection matrix. d: original dimension. m: compressed
dimension, ϵ: embedding error, δ: embedding failure prob. 7

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

Applying a random matrix Π to any vector y⃗ preserves y⃗’s norm with
high probability.

• Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

• Can be proven from first principles.

Π ∈ Rm×d : random projection matrix. d: original dimension. m: compressed
dimension, ϵ: embedding error, δ: embedding failure prob. 7

I -

C T

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given x⃗1, . . . , x⃗n, define
(n
2
)
vectors y⃗ij where y⃗ij = x⃗i − x⃗j.

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 8

-

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given x⃗1, . . . , x⃗n, define
(n
2
)
vectors y⃗ij where y⃗ij = x⃗i − x⃗j.

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 8

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given x⃗1, . . . , x⃗n, define
(n
2
)
vectors y⃗ij where y⃗ij = x⃗i − x⃗j.

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 8

- - .

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given x⃗1, . . . , x⃗n, define
(n
2
)
vectors y⃗ij where y⃗ij = x⃗i − x⃗j.

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 8

•

•

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given x⃗1, . . . , x⃗n, define
(n
2
)
vectors y⃗ij where y⃗ij = x⃗i − x⃗j.

• If we choose Π with m = O
(

log 1/δ
ϵ2

)
, for each y⃗ij with probability

≥ 1− δ we have:

(1− ϵ)∥⃗yij∥2 ≤ ∥Πy⃗ij∥2 ≤ (1+ ϵ)∥⃗yij∥2

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 8

- x i x ;
- . -

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given x⃗1, . . . , x⃗n, define
(n
2
)
vectors y⃗ij where y⃗ij = x⃗i − x⃗j.

• If we choose Π with m = O
(

log 1/δ
ϵ2

)
, for each y⃗ij with probability

≥ 1− δ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥Π(⃗xi − x⃗j)∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 8

- .

IFxi-Tx;Az
11Xi-XiH i 11Fyij " z

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given x⃗1, . . . , x⃗n, define
(n
2
)
vectors y⃗ij where y⃗ij = x⃗i − x⃗j.

• If we choose Π with m = O
(

log 1/δ
ϵ2

)
, for each y⃗ij with probability

≥ 1− δ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 8

=

Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)

= O
(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 9

=

Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)

= O
(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 9

-

c#y' i - s #- -

Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)

= O
(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 9

I s

Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
.

=⇒ for m = O
(

log(1/δ′)
ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)

= O
(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 9

- -
l - s

Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)

= O
(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 9

-

- - - -

Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)

= O
(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 9

Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)
= O

(
log(

(n
2
)
/δ)

ϵ2

)

= O
(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 9

Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)
= O

(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)

= O
(
log(n/δ)

ϵ2

)

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 9

Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)
= O

(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob. 9

[

--=÷⇐g⇒

Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)
= O

(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)

Yields the JL lemma.

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob.

9

Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩

=
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m)

.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ϵ: error, δ: failure prob. 10

- =

Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩

=
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m)

.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ϵ: error, δ: failure prob. 10

= - -

Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩

=
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m)

.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ϵ: error, δ: failure prob. 10

- -

Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩

=
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m)

.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ϵ: error, δ: failure prob. 10

-

o o 8 =E¥i§
,

Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩ =
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m).

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ϵ: error, δ: failure prob. 10

a s - - - a s

THs o o o o o
°

Distributional JL Proof

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩ =
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m).

• gi · y⃗(i) ∼ N (0, y⃗(i)
2

m): normally distributed with variance y⃗(i)2
m .

What is the distribution of y(̃j)? Also Gaussian!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable. 11

s o -

Distributional JL Proof

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩ =
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m).

• gi · y⃗(i) ∼ N (0, y⃗(i)
2

m): normally distributed with variance y⃗(i)2
m .

What is the distribution of y(̃j)? Also Gaussian!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable. 11

- .

- -

Distributional JL Proof

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩ =
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m).

• gi · y⃗(i) ∼ N (0, y⃗(i)
2

m): normally distributed with variance y⃗(i)2
m .

What is the distribution of y(̃j)? Also Gaussian!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable. 11

- -

Distributional JL Proof

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩ =
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m).

• gi · y⃗(i) ∼ N (0, y⃗(i)
2

m): normally distributed with variance y⃗(i)2
m .

What is the distribution of y(̃j)? Also Gaussian!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable.

11

-

-

-
-

permit.

→ -

54)- N(O,;§u¥)
d

Distributional JL Proof

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩ =
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m).

• gi · y⃗(i) ∼ N (0, y⃗(i)
2

m): normally distributed with variance y⃗(i)2
m .

What is the distribution of y(̃j)?

Also Gaussian!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable.

11

Distributional JL Proof

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = ⟨Π(j), y⃗⟩ =
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m).

• gi · y⃗(i) ∼ N (0, y⃗(i)
2

m): normally distributed with variance y⃗(i)2
m .

What is the distribution of y(̃j)? Also Gaussian!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable.

11

Distributional JL Proof

Letting ỹ = Πy⃗, we have ỹ(j) = ⟨Π(j), y⃗⟩ and:

ỹ(j) =
d∑

i=1

gi · y⃗(i) where gi · y⃗(i) ∼ N
(
0, y⃗(i)

2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

12

- - -

Distributional JL Proof

Letting ỹ = Πy⃗, we have ỹ(j) = ⟨Π(j), y⃗⟩ and:

ỹ(j) =
d∑

i=1

gi · y⃗(i) where gi · y⃗(i) ∼ N
(
0, y⃗(i)

2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

12

-

Distributional JL Proof

Letting ỹ = Πy⃗, we have ỹ(j) = ⟨Π(j), y⃗⟩ and:

ỹ(j) =
d∑

i=1

gi · y⃗(i) where gi · y⃗(i) ∼ N
(
0, y⃗(i)

2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

12

Distributional JL Proof

Letting ỹ = Πy⃗, we have ỹ(j) = ⟨Π(j), y⃗⟩ and:

ỹ(j) =
d∑

i=1

gi · y⃗(i) where gi · y⃗(i) ∼ N
(
0, y⃗(i)

2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

Thus, ỹ(j) ∼ N (0, y⃗(1)
2

m + y⃗(2)2
m + . . .+ y⃗(d)2

m)

I.e., ỹ itself is a random
Gaussian vector. Rotational invariance of the Gaussian distribution.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

12

- - I n Eycits'sHylli

Distributional JL Proof

Letting ỹ = Πy⃗, we have ỹ(j) = ⟨Π(j), y⃗⟩ and:

ỹ(j) =
d∑

i=1

gi · y⃗(i) where gi · y⃗(i) ∼ N
(
0, y⃗(i)

2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

Thus, ỹ(j) ∼ N (0, ∥⃗y∥2
2

m)

I.e., ỹ itself is a random Gaussian vector.
Rotational invariance of the Gaussian distribution.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

12

-

Distributional JL Proof

Letting ỹ = Πy⃗, we have ỹ(j) = ⟨Π(j), y⃗⟩ and:

ỹ(j) =
d∑

i=1

gi · y⃗(i) where gi · y⃗(i) ∼ N
(
0, y⃗(i)

2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

Thus, ỹ(j) ∼ N (0, ∥⃗y∥2
2

m) I.e., ỹ itself is a random Gaussian vector.
Rotational invariance of the Gaussian distribution.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

12

- -

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥y∥̃22]?

E[∥ỹ∥22] = E

⎡

⎣
m∑

j=1

ỹ(j)2
⎤

⎦

=
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

∥⃗y∥22
m

= ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

13

=

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥y∥̃22]?

E[∥ỹ∥22] = E

⎡

⎣
m∑

j=1

ỹ(j)2
⎤

⎦

=
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

∥⃗y∥22
m

= ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

13

= IlyHE

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥y∥̃22]?

E[∥ỹ∥22] = E

⎡

⎣
m∑

j=1

ỹ(j)2
⎤

⎦

=
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

∥⃗y∥22
m

= ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

13

-

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥y∥̃22]?

E[∥ỹ∥22] = E

⎡

⎣
m∑

j=1

ỹ(j)2
⎤

⎦ =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

∥⃗y∥22
m

= ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

13

- -

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥y∥̃22]?

E[∥ỹ∥22] = E

⎡

⎣
m∑

j=1

ỹ(j)2
⎤

⎦ =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

∥⃗y∥22
m

= ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

13

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥y∥̃22]?

E[∥ỹ∥22] = E

⎡

⎣
m∑

j=1

ỹ(j)2
⎤

⎦ =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

∥⃗y∥22
m

= ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

13

- Norris'D

- - = Ilyt h

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥y∥̃22]?

E[∥ỹ∥22] = E

⎡

⎣
m∑

j=1

ỹ(j)2
⎤

⎦ =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

∥⃗y∥22
m

= ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

13

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥y∥̃22]?

E[∥ỹ∥22] = E

⎡

⎣
m∑

j=1

ỹ(j)2
⎤

⎦ =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

∥⃗y∥22
m

= ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

13

panned

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥y∥̃22]?

E[∥ỹ∥22] = E

⎡

⎣
m∑

j=1

ỹ(j)2
⎤

⎦ =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

∥⃗y∥22
m

= ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

13

-

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m) and E[∥ỹ∥22] = ∥⃗y∥22

∥y∥̃22 =
∑m

i=1 y(̃j)2 a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ϵ: embedding error, δ: embedding failure prob. 14

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m) and E[∥ỹ∥22] = ∥⃗y∥22
∥y∥̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ϵ: embedding error, δ: embedding failure prob. 14

- I -

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m) and E[∥ỹ∥22] = ∥⃗y∥22
∥y∥̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ϵ: embedding error, δ: embedding failure prob. 14

p

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m) and E[∥ỹ∥22] = ∥⃗y∥22
∥y∥̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ ϵEZ] ≤ 2e−mϵ2/8.

If we set m = O
(

log(1/δ)
ϵ2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ϵ)∥⃗y∥22 ≤ ∥y∥̃22 ≤ (1+ ϵ)∥⃗y∥22.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ϵ: embedding error, δ: embedding failure prob. 14

[
- -

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m) and E[∥ỹ∥22] = ∥⃗y∥22
∥y∥̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ ϵEZ] ≤ 2e−mϵ2/8.

If we set m = O
(

log(1/δ)
ϵ2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ϵ)∥⃗y∥22 ≤ ∥y∥̃22 ≤ (1+ ϵ)∥⃗y∥22.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ϵ: embedding error, δ: embedding failure prob. 14

Eighty't dyn
-

dodgy

"ytti-"ylh.se/iyh2
-1%1%5/8

-
e

- - -

-

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

y(̃j) ∼ N (0, ∥⃗y∥22/m) and E[∥ỹ∥22] = ∥⃗y∥22
∥y∥̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ ϵEZ] ≤ 2e−mϵ2/8.

If we set m = O
(

log(1/δ)
ϵ2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ϵ)∥⃗y∥22 ≤ ∥y∥̃22 ≤ (1+ ϵ)∥⃗y∥22.

Gives the distributional JL Lemma and thus the classic JL Lemma!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ϵ: embedding error, δ: embedding failure prob.

14

c -

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x⃗∈Ck

∥⃗x− µj∥22.

Write in terms of distances:

Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22

15

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x⃗∈Ck

∥⃗x− µj∥22.

Write in terms of distances:

Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22

15

I#
I

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x⃗∈Ck

∥⃗x− µj∥22.

Write in terms of distances:

Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22
15

$'s
I . . - I

* - E l l i -
1 -

Example Application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22

If we randomly project tom = O
(

log n
ϵ2

)
dimensions, for all pairs x⃗1, x⃗2,

(1− ϵ)∥⃗x1 − x⃗2∥22 ≤ ∥x̃1 − x̃2∥22 ≤ (1+ ϵ)∥⃗x1 − x⃗2∥22

=⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x1̃,x̃2∈Ck

∥x1̃ − x̃2∥22

(1− ϵ)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ϵ)Cost(C1, . . . , Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cϵ times the true optimal. Good
exercise to prove this.

16

Example Application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22

If we randomly project tom = O
(

log n
ϵ2

)
dimensions, for all pairs x⃗1, x⃗2,

(1− ϵ)∥⃗x1 − x⃗2∥22 ≤ ∥x̃1 − x̃2∥22 ≤ (1+ ϵ)∥⃗x1 − x⃗2∥22

=⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x1̃,x̃2∈Ck

∥x1̃ − x̃2∥22

(1− ϵ)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ϵ)Cost(C1, . . . , Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cϵ times the true optimal. Good
exercise to prove this.

16

Example Application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22

If we randomly project tom = O
(

log n
ϵ2

)
dimensions, for all pairs x⃗1, x⃗2,

(1− ϵ)∥⃗x1 − x⃗2∥22 ≤ ∥x̃1 − x̃2∥22 ≤ (1+ ϵ)∥⃗x1 − x⃗2∥22 =⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x1̃,x̃2∈Ck

∥x1̃ − x̃2∥22

(1− ϵ)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ϵ)Cost(C1, . . . , Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cϵ times the true optimal. Good
exercise to prove this.

16

Example Application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22

If we randomly project tom = O
(

log n
ϵ2

)
dimensions, for all pairs x⃗1, x⃗2,

(1− ϵ)∥⃗x1 − x⃗2∥22 ≤ ∥x̃1 − x̃2∥22 ≤ (1+ ϵ)∥⃗x1 − x⃗2∥22 =⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x1̃,x̃2∈Ck

∥x1̃ − x̃2∥22

(1− ϵ)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ϵ)Cost(C1, . . . , Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cϵ times the true optimal. Good
exercise to prove this.

16

