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LOGISTICS

- Problem Set 2 is due next Friday 10/15.
- Midterm is in class on Tuesday, 10/19.

- | have posted a study guide and practice questions on the
course schedule.



SUMMARY

Last Class:
- Introduced the k-frequent elements problem - identify all
elements of a stream of n elements that occur > n/k times.

-+ Saw how to solve approximately in O(klogn/e) space using
the Count-min sketch algorithm.

- Simple analysis based on Markov’s inequality and repeated
random hashing.

This Class:

- Randomized methods for dimensionality reduction.

- The Johnson-Lindenstrauss Lemma.



HIGH DIMENSIONAL DATA

‘Big Data’ means not just many data points, but many measurements
per data point. l.e, very high dimensional data.

- Twitter has 321 million active monthly users. Records (tens of)
thousands of measurements per user: who they follow, who
follows them, when they last visited the site, timestamps for
specific interactions, how many tweets they have sent, the text of
those tweets, etc.

+ A 3 minute Youtube clip with a resolution of 500 x 500 pixels at 15
frames/second with 3 color channels is a recording of > 2 billion
pixel values. Even a 500 x 500 pixel color image has 750,000 pixel
values.

* The human genome contains 3 billion+ base pairs. Genetic
datasets often contain information on 100s of thousands+
mutations and genetic markers.



DATA AS VECTORS AND MATRICES

In data analysis and machine learning, data points with many
attributes are often stored, processed, and interpreted as high
dimensional vectors, with real valued entries.

ATAGCCGTAGT =——p x=[12134432134]

Similarities/distances between
vectors (e.g, (x,v), ||x — y||») have
meaning for underlying data points.



DATASETS AS VECTORS AND MATRICES

Data points are interpreted as high dimensional vectors, with
real valued entries. Data set is interpreted as a matrix.

Data Points: X1,%, ..., X, € RY.
Data Set: X € R™*% with " row equal to X;.

X € Rxd

- N = 3000 images

LYPY~~~—0000

d = 784 pixels

Many data points n = tall. Many dimensions d = wide.



DIMENSIONALITY REDUCTION

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.

Xy Kn€RY 5 %, %, € R™ form < d.

oY — x=I 100110111...] ——> =[-5543.2-1]

‘Lossy compression’ that still preserves important information about
the relationships between X, ..., X,.

Generally will not consider directly how well X; approximates X;.



DIMENSIONALITY REDUCTION

Dimensionality reduction is one of the most important
techniques in data science. What methods have you heard of?

- Principal component analysis
- Latent semantic analysis (LSA)

Raw Text Term Document Representation Latent Representation

1101101..] £ =[11240-5]
.qx2 [111 10111010.] %7 57 -]
X =[10101 100..] %= [10.6 -1 ]

%= [

- Linear discriminant analysis
- Autoencoders

Compressing data makes it more efficient to work with. May
also remove extraneous information/noise.



EMBEDDINGS FOR EUCLIDEAN SPACE

Euclidean Low Distortion Embedding: Given X;,...,X, € RY and error
parameter e > 0, find X;,...,%, € R™ (where m < d) such that for all
I,j €[n:

(1= X = Xill2 < 1% = Xl < (1 + 1% = Xl2-

Recall that for Z € R", ||Z]l, = /1L, Z(1)2.

Pythagorean theorem.
z(1)
——

S

llzll; = vz(1)? + 2(2)?

d-dimensional space m-dimensional space
® (for m << d)



EMBEDDING WITH ASSUMPTIONS

A very easy case: Assume that X, ..., X, all lie on the 15t axis in RY.

Set m = 1and X; = [X;(1)] (i.e,, X; contains just a single number).

% =Xl = /IG() = X (]2 = 1X:(1) = X(D)] = [1X; = Xill2.

-+ An embedding with no distortion from any d into m = 1.



EMBEDDING WITH ASSUMPTIONS

Assume that Xy, ... X, lie in any k-dimensional subspace V of R¢.

vy X

- Let V4, Vb, ...V, be an orthonormal basis for V and let V e R9*k pe
the matrix with these vectors as its columns.

- For all i,j we have X; — X; € V and (a good exercise!):

R

> i F = %) = VI(E — %)l

=1

—

1Xi — Xjll2 =

O i e 2 DR e~ AITS i~ e m



EMBEDDING WITH NO ASSUMPTIONS

What about when we don’t make any assumptions on
X1,...,Xn. le, they can be scattered arbitrarily around
d-dimensional space?

- Can we find a no-distortion embedding into m <« d
dimensions? No. Require m = d.

- Can we find an e-distortion embedding into m <« d
dimensions for e > 0? Yes! Always, with m depending on e.

Foralli,j: (1= e)lIXi — Xjlla < 1% — Xjll2 < (1 + €)lIX; — |2
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THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points
X1,..., % € R?and e > 0 there exists a linear map M : RY — R™
such thatm = 0 (log”) and letting %; = MNX::

Foralli,j: (1= e)lIXi = Xjll2 < 1% = Xjll2 < (1 + €)lIXi — Xl

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m), it satisfies the guarantee with high probability.

\. J

For d = 1 trillion, e = .05, and n = 100, 000, m ~ 6600.

Very surprising! Powerful result with a simple construction: applying
a random linear transformation to a set of points preserves
distances between all those points with high probability.



RANDOM PROJECTION

Forany X, ..., X, and M e R™*? with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = NX;:

Foralli,j: (1= e)lIXi = Xjll2 < 1% = Xilla < (1+ €)X = Xl2-

mxd dx1 mx1
0112 34 67 10 —.49..
—45_ 7 .14 18 — .65  76..
x| =
n
/
random linear transformation
(random projection) compressed output point
(low dimensions)
logn
m= 0( gz )
€ ol
input point
(high dimensions)

- Mis known as a random projection. It is a random linear function,
mapping length d vectors to length m vectors.

- Mis data oblivious. Stark contrast to methods like PCA.
13



ALGORITHMIC CONSIDERATIONS

- Many alternative constructions: 41 entries, sparse (most
entries 0), Fourier structured, etc. = more efficient
computation of X; = MX..

- Data oblivious property means that once M is chosen,
X1,...,Xn can be computed in a stream with little memory.

- Memory needed is just O(d + nm) vs. O(nd) to store the full
data set.

- Compression can also be easily performed in parallel on
different servers.

- When new data points are added, can be easily compressed,
without updating existing points.
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CONNECTION TO SIMHASH

Compression operation is X; = MX;, so for any j,
d
%i(j) = (NG), %) = D> N(, k) - Xi(k).
k=1

M(j) is a vector with independent random Gaussian entries.

mxd dx1 mx1
01 —12 34 67 .10 —.49..
—45__7 14 18 —.65  .76..
x| =
n
f
random linear transformation
(random projection) compressed output point
(low dimensions)
logn
m=0(=5%)
€ -]
input point
(high dimensions)
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DISTRIBUTIONAL JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we set m = O (“’%ﬂ) then for any

v € RY with probability > 1— 4§
(1=l < IN¥lla < (T + &) Il2

Applying a random matrix M to any vector y preserves y's norm with

high probability.

- Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

- Can be proven from first principles.

N e R™¥4: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob.
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Questions?
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DISTRIBUTIONAL JL — JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection M preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

Proof: Given Xi,...,X,, define (J) vectors y; where jj = X; — X.

X4
Xz

Xy

log1/8

€2

- If we choose Mwithm=0 ( ) for each yj; with probability
>1—§ we have: 18



DISTRIBUTIONAL JL — JL

Claim: If we choose M with i.i.d. A(0,1/m) entries and
m=0 (log(!#) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(M= elIXi = Xjll2 < [I1%; — Xjll2 < (14 €)lIX; — Xjl|2-
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (3) - &' all pairwise distances are
preserved.

Apply the claim with ¢’ = 6/(5). = form =0 (%) all

€

pairwise distances are preserved with probability > 1 — 4.

_O<tog(w)> (tog(()/é)> (tog(;z/a)>0<togig/d>>

Yields the JL lemma.
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Questions?
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