COMPSCI 514: Problem Set 2

Due: 10/14 by 11:59pm in Gradescope.

Instructions:

e You are allowed to, and highly encouraged to, work on this problem set in a group of up to

three members.

e Each group should submit a single solution set: one member should upload a pdf to

Gradescope, marking the other members as part of their group in Gradescope.

e You may talk to members of other groups at a high level about the problems but not work

through the solutions in detail together.

e You must show your work/derive any answers as part of the solutions to receive full credit.

1. Moment Bounds and Exponential Concentration (8 points)

Consider flipping n independent coins, each of which hits heads with probability 1/2 and tails
otherwise. Let X be the number of heads that you see.

1.

2.

1 point) For n = 1000, exactly compute Pr(X > 600).

( )
(1 point) For n = 1000, use Markov’s inequality to upper bound Pr(X > 600).

(1 point) For n = 1000, use Chebyshev’s inequality to upper bound Pr(X > 600).

(1 point) For n = 1000, use a Chernoff bound inequality to upper bound Pr(X > 600).
(

2 points) For any z > 0, give a formula for Elexp(2X)]. Use this to derive an upper bound
on Pr(X > t) as a function of n,t, and z. Hint: Use that for independent X,Y, E[XY] =

(2 points) Apply the formula above to give the best upper bound you can on Pr(X > 600)
when n = 1000. Hint: Optimize the bound over z > 0.

2. Streaming Averages (5 points)

1.

(1 point) Consider a stream of numbers 1, ..., x,. Describe an algorithm that processes this
stream using O(1) space and exactly computes the average p = %Z?:l z;. Note: Do not
worry about bit complexity. It suffices to describe an algorithm that accomplishes the task
by storing just O(1) numbers.



2. (4 points) Again consider a stream of numbers x1,...,z, all lying in [-M, M]. Let ug be
the average of the distinct elements in the data stream. Describe an algorithm that, given
6,6 € (0,1), uses O(log(1/5)/€%) space and outputs, with probability at least 1 — 4§, an
estimator fig with |fg — pg| < e€- M.

Hint: First figure out how to take random samples from the stream which are equal to g
in expectation. Then apply a concentration inequality.

3. A Better Method for Similarity Estimation (8 points)

Consider estimating the Jaccard similarity J(A, B) = Iigg} between two sets A and B via the

following simple strategy based on repeated MinHashing:

e Choose k independent uniform random hash functions hy, ..., hy : U — [0, 1].
o Let s = {sf,... s} where s = minse4 h;(a).
o Let sP = {sP ... sP} where s? = minyep h;(b).

Given s and s®, each a list of k numbers, estimate .J(A, B) as J = %Zle 1[s = sP] (ie., J is
the fraction of colliding hashes in s4 and s?).

N
N

1. (3 points) Show that if we set k > %, for €, € (0,1), then with probability at least 1 — 0,
3= J(4,B)| < /T4, B).
Now consider a different strategy:
e Choose a single uniform random hash functions h : U — [0, 1].

e Let s? contain the k smallest values obtained when h is applied to all the items in A. Similarly,
let s® contain the k smallest values obtained when h is applied to all the items in B.

e Let s contain the k smallest hash values from s? U sZ.

- A~.B -
Estimate J(A, B) as J = \stmﬂ Le., J is the fraction of values in s that are in both s and s?.

2. (2 points) Show that E[J] = J(A, B).

3. (2 points) Show that if we set k > 62%, for €,0 € (0,1), then with probability at least 1 — 4,

J — J(A,B)| < e\/J(A,B).
| |

Hint: You may use the following result on sampling without replacement: Let Xq,..., Xy be
independent and identically distributed random variables, drawn independently and uniformly
at random with replacement from a finite multi-set U. Let Yq,..., Yy be drawn uniformly

at random without replacement from U. Then Var (Zle Yi> < Var (Zle XZ-).

4. (1 point) Computationally, why might this above method be preferred over the simple re-
peated MinHashing approach in part 17



4. Improved Bounds and Variants of Count-Min Sketch (10 points)

In class we showed that the Count-Min sketch algorithm implemented with ¢ = O(log(1/6)) tables
of size m returns a frequency estimate f () for any item x, satisfying with probability > 1 — 0,
f(z) < f(x) < flz)+ S where n is the total frequency of items in the data stream and c is a
small constant (¢ = 2 in the analysis shown in class).

1. (4 points) Let f1,..., fr be the frequencies of the k most frequent items in our data stream
and let ny =n — Zle fi. Prove that Count-Min sketch implemented with ¢t = O(log(1/4))
tables of size m = O(k) returns a frequency estimate f(z) for any item x, satisfying with
probability > 1 -4, f(z) < f(z) < f(z) + <k for some constant c.

2. (2 points) Describe a scenario in which you think that the error bound above will be much
better than the error bound shown in class.

3. (4 points) Consider a variation on count-min sketch: instead of incrementing each counter
Arfhy ()], ..., Ae[he(x;)] when z; comes in, we compute M = min;c() Aj[h;(z;)]. Then we
only increment A;[h;(x;)] if Aj[hj(x;)] = M. Show that the estimate output by this variation
can only be better than the estimate of the count-min sketch algorithm presented in class.



