COMPSCI 514: Problem Set 2

Due: 10/14 by 11:59pm in Gradescope.

Instructions:

- You are allowed to, and highly encouraged to, work on this problem set in a group of up to three members.
- Each group should **submit a single solution set**: one member should upload a pdf to Gradescope, marking the other members as part of their group in Gradescope.
- You may talk to members of other groups at a high level about the problems but **not work through the solutions in detail together**.
- You must show your work/derive any answers as part of the solutions to receive full credit.

1. Moment Bounds and Exponential Concentration (8 points)

Consider flipping n independent coins, each of which hits heads with probability 1/2 and tails otherwise. Let **X** be the number of heads that you see.

- 1. (1 point) For n = 1000, exactly compute $Pr(\mathbf{X} \ge 600)$.
- 2. (1 point) For n = 1000, use Markov's inequality to upper bound $Pr(\mathbf{X} \ge 600)$.
- 3. (1 point) For n = 1000, use Chebyshev's inequality to upper bound $Pr(\mathbf{X} \ge 600)$.
- 4. (1 point) For n = 1000, use a Chernoff bound inequality to upper bound $Pr(\mathbf{X} \ge 600)$.
- 5. (2 points) For any z > 0, give a formula for $\mathbb{E}[\exp(z\mathbf{X})]$. Use this to derive an upper bound on $\Pr(\mathbf{X} \ge t)$ as a function of n, t, and z. **Hint:** Use that for independent $\mathbf{X}, \mathbf{Y}, \mathbb{E}[\mathbf{X}\mathbf{Y}] = \mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]$.
- 6. (2 points) Apply the formula above to give the best upper bound you can on $Pr(\mathbf{X} \ge 600)$ when n = 1000. Hint: Optimize the bound over z > 0.

2. Streaming Averages (5 points)

1. (1 point) Consider a stream of numbers x_1, \ldots, x_n . Describe an algorithm that processes this stream using O(1) space and exactly computes the average $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$. Note: Do not worry about bit complexity. It suffices to describe an algorithm that accomplishes the task by storing just O(1) numbers.

2. (4 points) Again consider a stream of numbers x_1, \ldots, x_n all lying in [-M, M]. Let μ_d be the average of the *distinct elements* in the data stream. Describe an algorithm that, given $\epsilon, \delta \in (0, 1)$, uses $O(\log(1/\delta)/\epsilon^2)$ space and outputs, with probability at least $1 - \delta$, an estimator $\tilde{\mu}_d$ with $|\tilde{\mu}_d - \mu_d| \leq \epsilon \cdot M$.

Hint: First figure out how to take random samples from the stream which are equal to μ_d in expectation. Then apply a concentration inequality.

3. A Better Method for Similarity Estimation (8 points)

Consider estimating the Jaccard similarity $J(A, B) = \frac{|A \cap B|}{|A \cup B|}$ between two sets A and B via the following simple strategy based on repeated MinHashing:

- Choose k independent uniform random hash functions $\mathbf{h}_1, \ldots, \mathbf{h}_k : U \to [0, 1]$.
- Let $\mathbf{s}^A = {\mathbf{s}_1^A, \dots, \mathbf{s}_k^A}$ where $\mathbf{s}_i^A = \min_{a \in A} \mathbf{h}_i(a)$.
- Let $\mathbf{s}^B = {\mathbf{s}^B_1, \dots, \mathbf{s}^B_k}$ where $\mathbf{s}^B_i = \min_{b \in B} \mathbf{h}_i(b)$.

Given \mathbf{s}^A and \mathbf{s}^B , each a list of k numbers, estimate J(A, B) as $\tilde{\mathbf{J}} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[\mathbf{s}_i^A = \mathbf{s}_i^B]$ (i.e., $\tilde{\mathbf{J}}$ is the fraction of colliding hashes in \mathbf{s}^A and \mathbf{s}^B).

1. (3 points) Show that if we set $k \ge \frac{1}{\epsilon^2 \delta}$, for $\epsilon, \delta \in (0, 1)$, then with probability at least $1 - \delta$, $\left| \mathbf{\tilde{J}} - J(A, B) \right| \le \epsilon \sqrt{J(A, B)}$.

Now consider a different strategy:

- Choose a single uniform random hash functions $\mathbf{h}: U \to [0, 1]$.
- Let \mathbf{s}^A contain the k smallest values obtained when **h** is applied to all the items in A. Similarly, let \mathbf{s}^B contain the k smallest values obtained when **h** is applied to all the items in B.
- Let **s** contain the k smallest hash values from $\mathbf{s}^A \cup \mathbf{s}^B$.

Estimate J(A, B) as $\mathbf{\tilde{J}} = \frac{|\mathbf{s}^A \cap \mathbf{s}^B \cap \mathbf{s}|}{k}$. I.e., $\mathbf{\tilde{J}}$ is the fraction of values in \mathbf{s} that are in both \mathbf{s}^A and \mathbf{s}^B .

- 2. (2 points) Show that $\mathbb{E}[\tilde{\mathbf{J}}] = J(A, B)$.
- 3. (2 points) Show that if we set $k \geq \frac{1}{\epsilon^2 \delta}$, for $\epsilon, \delta \in (0, 1)$, then with probability at least 1δ , $\left| \tilde{\mathbf{J}} J(A, B) \right| \leq \epsilon \sqrt{J(A, B)}$.

Hint: You may use the following result on sampling *without replacement*: Let $\mathbf{X}_1, \ldots, \mathbf{X}_k$ be independent and identically distributed random variables, drawn independently and uniformly at random with replacement from a finite multi-set U. Let $\mathbf{Y}_1, \ldots, \mathbf{Y}_k$ be drawn uniformly at random *without replacement* from U. Then $\operatorname{Var}\left(\sum_{i=1}^k \mathbf{Y}_i\right) \leq \operatorname{Var}\left(\sum_{i=1}^k \mathbf{X}_i\right)$.

4. (1 point) Computationally, why might this above method be preferred over the simple repeated MinHashing approach in part 1?

4. Improved Bounds and Variants of Count-Min Sketch (10 points)

In class we showed that the Count-Min sketch algorithm implemented with $t = O(\log(1/\delta))$ tables of size *m* returns a frequency estimate $\tilde{f}(x)$ for any item *x*, satisfying with probability $\geq 1 - \delta$, $f(x) \leq \tilde{f}(x) \leq f(x) + \frac{cn}{m}$, where *n* is the total frequency of items in the data stream and *c* is a small constant (*c* = 2 in the analysis shown in class).

- 1. (4 points) Let f_1, \ldots, f_k be the frequencies of the k most frequent items in our data stream and let $n_k = n - \sum_{i=1}^k f_i$. Prove that Count-Min sketch implemented with $t = O(\log(1/\delta))$ tables of size m = O(k) returns a frequency estimate $\tilde{f}(x)$ for any item x, satisfying with probability $\geq 1 - \delta$, $f(x) \leq \tilde{f}(x) \leq f(x) + \frac{cn_k}{m}$ for some constant c.
- 2. (2 points) Describe a scenario in which you think that the error bound above will be much better than the error bound shown in class.
- 3. (4 points) Consider a variation on count-min sketch: instead of incrementing each counter $A_1[\mathbf{h}_1(x_i)], \ldots, A_t[\mathbf{h}_t(x_i)]$ when x_i comes in, we compute $M = \min_{j \in [t]} A_j[\mathbf{h}_j(x_i)]$. Then we only increment $A_j[\mathbf{h}_j(x_i)]$ if $A_j[\mathbf{h}_j(x_i)] = M$. Show that the estimate output by this variation can only be better than the estimate of the count-min sketch algorithm presented in class.