COMPSCI 514: Problem Set 2

Due: 10/14 by 11:59pm in Gradescope.

Instructions:

- You are allowed to, and highly encouraged to, work on this problem set in a group of up to three members.
- Each group should submit a single solution set: one member should upload a pdf to Gradescope, marking the other members as part of their group in Gradescope.
- You may talk to members of other groups at a high level about the problems but not work through the solutions in detail together.
- You must show your work/derive any answers as part of the solutions to receive full credit.

1. Moment Bounds and Exponential Concentration (8 points)

Consider flipping n independent coins, each of which hits heads with probability $1 / 2$ and tails otherwise. Let \mathbf{X} be the number of heads that you see.

1. (1 point) For $n=1000$, exactly compute $\operatorname{Pr}(\mathbf{X} \geq 600)$.
2. (1 point) For $n=1000$, use Markov's inequality to upper bound $\operatorname{Pr}(\mathbf{X} \geq 600)$.
3. (1 point) For $n=1000$, use Chebyshev's inequality to upper bound $\operatorname{Pr}(\mathbf{X} \geq 600)$.
4. (1 point) For $n=1000$, use a Chernoff bound inequality to upper bound $\operatorname{Pr}(\mathbf{X} \geq 600)$.
5. (2 points) For any $z>0$, give a formula for $\mathbb{E}[\exp (z \mathbf{X})]$. Use this to derive an upper bound on $\operatorname{Pr}(\mathbf{X} \geq t)$ as a function of n, t, and z. Hint: Use that for independent $\mathbf{X}, \mathbf{Y}, \mathbb{E}[\mathbf{X Y}]=$ $\mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]$.
6. (2 points) Apply the formula above to give the best upper bound you can on $\operatorname{Pr}(\mathbf{X} \geq 600)$ when $n=1000$. Hint: Optimize the bound over $z>0$.

2. Streaming Averages (5 points)

1. (1 point) Consider a stream of numbers x_{1}, \ldots, x_{n}. Describe an algorithm that processes this stream using $O(1)$ space and exactly computes the average $\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. Note: Do not worry about bit complexity. It suffices to describe an algorithm that accomplishes the task by storing just $O(1)$ numbers.
2. (4 points) Again consider a stream of numbers x_{1}, \ldots, x_{n} all lying in $[-M, M]$. Let μ_{d} be the average of the distinct elements in the data stream. Describe an algorithm that, given $\epsilon, \delta \in(0,1)$, uses $O\left(\log (1 / \delta) / \epsilon^{2}\right)$ space and outputs, with probability at least $1-\delta$, an estimator $\tilde{\mu}_{d}$ with $\left|\tilde{\mu}_{d}-\mu_{d}\right| \leq \epsilon \cdot M$.
Hint: First figure out how to take random samples from the stream which are equal to μ_{d} in expectation. Then apply a concentration inequality.

3. A Better Method for Similarity Estimation (8 points)

Consider estimating the Jaccard similarity $J(A, B)=\frac{|A \cap B|}{|A \cup B|}$ between two sets A and B via the following simple strategy based on repeated MinHashing:

- Choose k independent uniform random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}: U \rightarrow[0,1]$.
- Let $\mathbf{s}^{A}=\left\{\mathbf{s}_{1}^{A}, \ldots, \mathbf{s}_{k}^{A}\right\}$ where $\mathbf{s}_{i}^{A}=\min _{a \in A} \mathbf{h}_{i}(a)$.
- Let $\mathbf{s}^{B}=\left\{\mathbf{s}_{1}^{B}, \ldots, \mathbf{s}_{k}^{B}\right\}$ where $\mathbf{s}_{i}^{B}=\min _{b \in B} \mathbf{h}_{i}(b)$.

Given \mathbf{s}^{A} and \mathbf{s}^{B}, each a list of k numbers, estimate $J(A, B)$ as $\tilde{\mathbf{J}}=\frac{1}{k} \sum_{i=1}^{k} \mathbb{1}\left[\mathbf{s}_{i}^{A}=\mathbf{s}_{i}^{B}\right]$ (i.e., $\tilde{\mathbf{J}}$ is the fraction of colliding hashes in \mathbf{s}^{A} and \mathbf{s}^{B}).

1. (3 points) Show that if we set $k \geq \frac{1}{\epsilon^{2} \delta}$, for $\epsilon, \delta \in(0,1)$, then with probability at least $1-\delta$, $|\tilde{\mathbf{J}}-J(A, B)| \leq \epsilon \sqrt{J(A, B)}$.

Now consider a different strategy:

- Choose a single uniform random hash functions $\mathbf{h}: U \rightarrow[0,1]$.
- Let \mathbf{s}^{A} contain the k smallest values obtained when \mathbf{h} is applied to all the items in A. Similarly, let \mathbf{s}^{B} contain the k smallest values obtained when \mathbf{h} is applied to all the items in B.
- Let \mathbf{s} contain the k smallest hash values from $\mathbf{s}^{A} \cup \mathbf{s}^{B}$.

Estimate $J(A, B)$ as $\tilde{\mathbf{J}}=\frac{\left|\mathbf{s}^{A} \cap \mathbf{s}^{B} \cap \mathbf{n}\right|}{k}$. I.e., $\tilde{\mathbf{J}}$ is the fraction of values in \mathbf{s} that are in both \mathbf{s}^{A} and \mathbf{s}^{B}.
2. (2 points) Show that $\mathbb{E}[\tilde{\mathbf{J}}]=J(A, B)$.
3. (2 points) Show that if we set $k \geq \frac{1}{\epsilon^{2} \delta}$, for $\epsilon, \delta \in(0,1)$, then with probability at least $1-\delta$, $|\tilde{\mathbf{J}}-J(A, B)| \leq \epsilon \sqrt{J(A, B)}$.
Hint: You may use the following result on sampling without replacement: Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{k}$ be independent and identically distributed random variables, drawn independently and uniformly at random with replacement from a finite multi-set U. Let $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{k}$ be drawn uniformly at random without replacement from U. Then $\operatorname{Var}\left(\sum_{i=1}^{k} \mathbf{Y}_{i}\right) \leq \operatorname{Var}\left(\sum_{i=1}^{k} \mathbf{X}_{i}\right)$.
4. (1 point) Computationally, why might this above method be preferred over the simple repeated MinHashing approach in part 1?

4. Improved Bounds and Variants of Count-Min Sketch (10 points)

In class we showed that the Count-Min sketch algorithm implemented with $t=O(\log (1 / \delta))$ tables of size m returns a frequency estimate $\tilde{f}(x)$ for any item x, satisfying with probability $\geq 1-\delta$, $f(x) \leq \tilde{f}(x) \leq f(x)+\frac{c n}{m}$, where n is the total frequency of items in the data stream and c is a small constant ($c=2$ in the analysis shown in class).

1. (4 points) Let f_{1}, \ldots, f_{k} be the frequencies of the k most frequent items in our data stream and let $n_{k}=n-\sum_{i=1}^{k} f_{i}$. Prove that Count-Min sketch implemented with $t=O(\log (1 / \delta))$ tables of size $m=O(k)$ returns a frequency estimate $\tilde{f}(x)$ for any item x, satisfying with probability $\geq 1-\delta, f(x) \leq \tilde{f}(x) \leq f(x)+\frac{c n_{k}}{m}$ for some constant c.
2. (2 points) Describe a scenario in which you think that the error bound above will be much better than the error bound shown in class.
3. (4 points) Consider a variation on count-min sketch: instead of incrementing each counter $A_{1}\left[\mathbf{h}_{1}\left(x_{i}\right)\right], \ldots, A_{t}\left[\mathbf{h}_{t}\left(x_{i}\right)\right]$ when x_{i} comes in, we compute $M=\min _{j \in[t]} A_{j}\left[\mathbf{h}_{j}\left(x_{i}\right)\right]$. Then we only increment $A_{j}\left[\mathbf{h}_{j}\left(x_{i}\right)\right]$ if $A_{j}\left[\mathbf{h}_{j}\left(x_{i}\right)\right]=M$. Show that the estimate output by this variation can only be better than the estimate of the count-min sketch algorithm presented in class.
