
COMPSCI 514: Problem Set 2

Due: 10/14 by 11:59pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

1. Moment Bounds and Exponential Concentration (8 points)

Consider flipping n independent coins, each of which hits heads with probability 1/2 and tails
otherwise. Let X be the number of heads that you see.

1. (1 point) For n = 1000, exactly compute Pr(X ≥ 600).

2. (1 point) For n = 1000, use Markov’s inequality to upper bound Pr(X ≥ 600).

3. (1 point) For n = 1000, use Chebyshev’s inequality to upper bound Pr(X ≥ 600).

4. (1 point) For n = 1000, use a Chernoff bound inequality to upper bound Pr(X ≥ 600).

5. (2 points) For any z > 0, give a formula for E[exp(zX)]. Use this to derive an upper bound
on Pr(X ≥ t) as a function of n, t, and z. Hint: Use that for independent X,Y, E[XY] =
E[X] · E[Y].

6. (2 points) Apply the formula above to give the best upper bound you can on Pr(X ≥ 600)
when n = 1000. Hint: Optimize the bound over z > 0.

2. Streaming Averages (5 points)

1. (1 point) Consider a stream of numbers x1, . . . , xn. Describe an algorithm that processes this
stream using O(1) space and exactly computes the average µ = 1

n

∑n
i=1 xi. Note: Do not

worry about bit complexity. It suffices to describe an algorithm that accomplishes the task
by storing just O(1) numbers.
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2. (4 points) Again consider a stream of numbers x1, . . . , xn all lying in [−M,M ]. Let µd be
the average of the distinct elements in the data stream. Describe an algorithm that, given
ϵ, δ ∈ (0, 1), uses O(log(1/δ)/ϵ2) space and outputs, with probability at least 1 − δ, an
estimator µ̃d with |µ̃d − µd| ≤ ϵ ·M .

Hint: First figure out how to take random samples from the stream which are equal to µd

in expectation. Then apply a concentration inequality.

3. A Better Method for Similarity Estimation (8 points)

Consider estimating the Jaccard similarity J(A,B) = |A∩B|
|A∪B| between two sets A and B via the

following simple strategy based on repeated MinHashing:

• Choose k independent uniform random hash functions h1, . . . ,hk : U → [0, 1].

• Let sA = {sA1 , . . . , sAk } where sAi = mina∈A hi(a).

• Let sB = {sB1 , . . . , sBk } where sBi = minb∈B hi(b).

Given sA and sB, each a list of k numbers, estimate J(A,B) as J̃ = 1
k

∑k
i=1 1[s

A
i = sBi ] (i.e., J̃ is

the fraction of colliding hashes in sA and sB).

1. (3 points) Show that if we set k ≥ 1
ϵ2δ

, for ϵ, δ ∈ (0, 1), then with probability at least 1 − δ,∣∣∣J̃− J(A,B)
∣∣∣ ≤ ϵ

√
J(A,B).

Now consider a different strategy:

• Choose a single uniform random hash functions h : U → [0, 1].

• Let sA contain the k smallest values obtained when h is applied to all the items in A. Similarly,
let sB contain the k smallest values obtained when h is applied to all the items in B.

• Let s contain the k smallest hash values from sA ∪ sB.

Estimate J(A,B) as J̃ = |sA∩sB∩s|
k . I.e., J̃ is the fraction of values in s that are in both sA and sB.

2. (2 points) Show that E[J̃] = J(A,B).

3. (2 points) Show that if we set k ≥ 1
ϵ2δ

, for ϵ, δ ∈ (0, 1), then with probability at least 1 − δ,∣∣∣J̃− J(A,B)
∣∣∣ ≤ ϵ

√
J(A,B).

Hint: You may use the following result on sampling without replacement : Let X1, . . . ,Xk be
independent and identically distributed random variables, drawn independently and uniformly
at random with replacement from a finite multi-set U . Let Y1, . . . ,Yk be drawn uniformly

at random without replacement from U . Then Var
(∑k

i=1Yi

)
≤ Var

(∑k
i=1Xi

)
.

4. (1 point) Computationally, why might this above method be preferred over the simple re-
peated MinHashing approach in part 1?
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4. Improved Bounds and Variants of Count-Min Sketch (10 points)

In class we showed that the Count-Min sketch algorithm implemented with t = O(log(1/δ)) tables
of size m returns a frequency estimate f̃(x) for any item x, satisfying with probability ≥ 1 − δ,
f(x) ≤ f̃(x) ≤ f(x) + cn

m , where n is the total frequency of items in the data stream and c is a
small constant (c = 2 in the analysis shown in class).

1. (4 points) Let f1, . . . , fk be the frequencies of the k most frequent items in our data stream
and let nk = n −

∑k
i=1 fi. Prove that Count-Min sketch implemented with t = O(log(1/δ))

tables of size m = O(k) returns a frequency estimate f̃(x) for any item x, satisfying with
probability ≥ 1− δ, f(x) ≤ f̃(x) ≤ f(x) + cnk

m for some constant c.

2. (2 points) Describe a scenario in which you think that the error bound above will be much
better than the error bound shown in class.

3. (4 points) Consider a variation on count-min sketch: instead of incrementing each counter
A1[h1(xi)], . . . , At[ht(xi)] when xi comes in, we compute M = minj∈[t]Aj [hj(xi)]. Then we
only increment Aj [hj(xi)] if Aj [hj(xi)] = M . Show that the estimate output by this variation
can only be better than the estimate of the count-min sketch algorithm presented in class.
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