
COMPSCI 514: Problem Set 1

Due: 9/23 by 11:59pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may not talk with anyone outside your group about the homework expect for the in-
structor and TAs.

• You must show your work/derive any answers as part of the solutions to receive full credit.

1. Probability Practice (10 points)

1. (2 points) Consider storing n items in a hash table with m = n buckets, using a fully random
hash function h : [n] → [n] (i.e., each item is assigned independently to a uniform random
bucket). What is the expected fraction of buckets that have at least one item in them? What
is the limit of this value as n → ∞? What about when m = 2n? Hint: Use linearity of
expectation.

2. (2 points) I store 1, 000 items in a hash table with 100, 000 buckets, using a fully random hash
function. What is the probability that there is at least 1 collision. What if I use 1, 000, 000
buckets? What is the probability that there is at least one collision?

3. (2 points) Prove that Var(X+Y) = Var(X) + Var(Y) + 2E[(X− E[X])(Y − E[Y])].

4. (2 points) Design two random variables X and Y that satisfy Var(X)+Var(Y) > Var(X+Y).
Design two different random variables that satisfy Var(X) + Var(Y) < Var(X+Y)

5. (2 points) Describe a random variable X with E[X] = 0, E[X2] = 1 and E[X4] = 1. Prove
that this is the only random variable satisfying these three conditions. Hint: In your proof,
you may want to use that for any random variable Y, Var[Y] = E[Y2]− E[Y]2.

2. More Independence, Fewer Collisions (6 points)

As discussed in class, in practice, a fully random hash function that maps any input to a uniform
and independently chosen output is not efficiently implementable. So, random hash functions that
approximate the behavior of a fully random hash function are often used. In class, we talked about
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2-universal hash functions, which have collision probability ≤ 1/n for any two items. A k-universal
hash function h : U → [n] is any random hash function that satisfies, for any inputs x1, . . . , xk ∈ U ,

Pr[h(x1) = h(x2) = . . . = h(xk)] ≤
1

nk−1
.

1. (2 points) Suppose you hash n balls into n hash buckets using a 2-universal hash function.
Show that for t = 5n, the number of pairwise collisions exceeds t with probability at most
1/10.

2. (2 points) Use the above to argue that for t = 4
√
n, that the maximum load on any bin

exceeds t with probability at most 1/10, when hashing n balls into n hash buckets. Hint:
Don’t use a union bound.

3. (2 points) Generalize this result to k-universal hash functions for k > 2. Show that if t = cn1/k

for large enough constant c, that the probability of the maximum load exceeding t at most
1/10. Hint: Instead of pairwise collisions, consider the expected number of k-wise collisions.

3. Stacking Hash Tables (6 points)

In class we show that if we store n items in a hash table with m buckets, using a fully random
hash function h : [n] → [m] (i.e., each item is assigned independently to a uniform random bucket),
then m = cn2 for some sufficiently large constant c, there are no collisions with probability at
least 9/10. Thus, the table has worst case O(1) lookup time, but very large space complexity.
We proposed 2-level hashing as a way to reduce this space complexity. Here we will analyze an
alternative scheme.

1. (1 point) Consider storing n items in two hash tables with m buckets each, using two different
fully random hash functions h1 : [n] → [m], h2 : [n] → [m]. An item x is stored in bucket
h1(x) of the first table, unless this bucket already has an item in it. In that case, it is stored in
bucket h2(x) of the second table. Assuming that there are no collisions (i.e., that all buckets
in the second table have at most one item in them), what is the worst case lookup time for
this scheme?

2. (1 point) Describe one possible advantage of this scheme over 2-level hashing.

3. (4 points) How large must m be such that, with probability at least 9/10, there are no
collisions in this scheme? Hint: First bound the number of collisions in the first table. Then
use this to bound the number of collisions in the second table.

4. Concentration with k-wise Independence (10 points)

We say a set of random variables {X1,X2, . . . ,Xn} is k-wise independent if for any subset S of [n]
with at most k elements then

Pr[
⋂
i∈S

{Xi = ji}] =
∏
i∈S

Pr[Xi = ji] ∀j1, j2, . . . , j|S| .

1. (2 points) Suppose X1 and X2 are independent random variables that are each equally likely
to be −1 or 1 and that X3 = X1/X2. Are the variables X1,X2,X3 2-wise independent? Are
they 3-wise independent? Prove your answers.
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2. (2 points) Prove that if {X1,X2, . . . ,Xn} are 2-wise independent then Var(
∑

i∈[n]Xi) =∑
i∈[n]Var(Xi).

3. (2 points) Suppose {X1,X2, . . . ,Xn} are 2-wise independent and each Xi is equally likely to
be 0 or 2. Let X = 1

n

∑
i∈[n]Xi. Prove the best upper bound you can on the probability

Pr[|X− 1| ≥ 0.1] if n = 1000.

4. (2 points) Suppose {X1,X2, . . . ,Xn} are 4-wise independent and each Xi is equally likely to
be 0 or 2. Let X = 1

n

∑
i∈[n]Xi. Prove the best upper bound you can on the probability

Pr[|X− 1| ≥ 0.1] if n = 1000. Hint: You may use the fact that E[(X− 1)4] = 3/n2 − 2/n3.

5. (2 points) Consider the CAPTCHA example discussed in class. Let D =
∑

i<j,i,j∈[m]Dij be
the total number of pairwise duplicates when drawing m CAPTCHAS from a database of
size n. For m = 1000 and n = 1000000 prove the best upper bound you can on Pr[D ≥ 10].
How does this compare to the bound proven using Markov’s inequality in class? Hint: Start
by arguing that the Dij random variables are pairwise independent.
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