
COMPSCI 514: Final Review

General Info: Format/difficulty will be similar to the midterm, with a mix of short answers with
explanations and problem solving. Likely will have four main questions and a fifth bonus question.

Studying Tips:

• I recommend focusing on primarily on practice problems – from this review sheet, the quizzes,
the homeworks (including Problem Set 5 even if you don’t turn it in), the practice exams,
and class. For quizzes/homeworks/in class questions – try to re-solve without looking at the
answer key or a solution given in the next slide. Then check to see how you did.

• For all practice questions, try to solve (and write down) a solution first without resources and
somewhat quickly, as you would on the exam. Then go back and more slowly work through
the problem, see if you solution is correct, etc.

• We encourage you to post on Piazza to check answers/discuss approaches.

Instructions for the Final:

• You must show your work/derive any answers as part of the solutions to receive full
credit (and partial credit if you make a mistake).

• The exam is closed notes.

• Calculators are not permitted – they will not be needed.

1 Concepts to Study

Probability and Randomized Algorithms (First Half of Class)

• The exam will not specifically test this part of the class, but you should be able to apply
foundational techniques. E.g., compute expectations, linearity of expectation, union bound,
take the expectation of a random matrix or a random dot product, etc.

Low-Rank Approximation and PCA

• Understand and apply important linear algebraic manipulations used. E.g.:

– yT y = ∥y∥22 and using this to split ∥x− y∥22 = ∥x∥22 + ∥y∥22 − 2xT y.

– tr(AAT ) = tr(ATA) = ∥A∥2F =
∑rank(A)

i=1 σi(A)2.

– For V ∈ Rd×k with orthonormal columns, VTV = I and VVT is a projection matrix.

– By Pythagorean theorem ∥X−XVVT ∥2F = ∥X∥2F − ∥XVVT ∥2F .
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– Definition of eigenvectors and values.

– Courant-Fischer theorem and connection to low-rank approxmiation.

• Low-rank approximation as projection onto a k-dimensional subspace. How this projection
gives a compressed representation of a data matrix X.

• Dual view of low-rank approximation as finding k vectors that approximately span the rows
(data points) and the columns (features). High level understanding of why a data matrix
may be nearly low-rank.

• Finding the best low-rank approximation (i.e., the best orthonormal span V ∈ Rd×k) of X
using the eigenvectors of XTX. Do not need to have full derivation memorized, but it is worth
working through. Understand high level takeaways – eigenvectors (principal components) as
directions of greatest variance, measuring the quality of the optimal low-rank approximation
by plotting the eigenvalues (the spectrum).

• Ability to recognize when a matrix will be low-rank or close to low-rank (e.g., given in image,
be able to make an educated guess about what its spectrum looks like.)

• Singular value decomposition definition.

• Connection of SVD of X to eigendecompositions of XTX and XXT . Connection of singular
values to eigenvalues of XTX and XXT .

• Computing PCA/optimal low-rank approximation from the SVD. Connection of left and right
singular vectors to the dual view of low-rank approximation as row and column approximation.

• Low-rank approximation of a similarity matrix and entity embedding.

• Iterative methods for SVD: power method and high level ideas of analysis. When does it
converge fast, when does it converge slow.

Spectral Methods for Graphs

• Adjacency matrix A and Laplacian (L = D−A) definitions.

• Interpretation of the Laplacian as measuring how smooth a vector (a function) is over nodes
of the graph.

• Connection to spectral embedding for non-linear dimensionality reduction.

• Motivation behind using the second smallest eigenvector of the Laplacian to find a small but
balanced cut. x⃗TLx⃗ as giving the size of a cut when x⃗ ∈ {−1, 1}n is a cut indicator vector.

• Graph clustering for non-linearly separable data and for community detection.

• Stochastic block model definition, expected adjacency matrix, Laplacian, and eigenvectors.
Why spectral clustering works for stochastic block model.

• Understand the high level idea of stochastic block model proof.

Optimization

• Definition of gradient and connection to directional derivative.
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• Ability to compute the gradient for basic functions.

• Gradient descent.

• Convex function definition and corollary of what it implies about the gradient.

• Lipschitz function definition.

• Would not need to recreate the analysis of GD for convex Lipschitz functions and do not
need to memorize the convergence theorem, but should understand the main ideas. Would
be valuable to work through.

• Convex set definition, definition of projection, projected gradient descent for constrained
optimization and why its analysis is essentially identical to that of gradient descent.
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2 Practice Questions

1. Linear Algebra and Low-Rank Approximation

1. Exercises 3.6, 3.7, 3.8, 3.10, 3.11 (here |x⃗| denotes the Euclidean norm of x⃗), 3.12, 3.13, 3.15,
3.18, 3.20, 3.21, 3.22, 3.26, 7.16, 12.31, 12.33 Foundations of Data Science.

2. Linear algebra practice (some we’ve seen before):

(a) For any vector y⃗ verify that ∥y⃗∥22 = ⟨y⃗, y⃗⟩ = y⃗T y⃗.

(b) If X = AB, X’s columns are spanned by the columns of A and X’s rows are spanned
by the rows of B. Check that you understand why. What about when X = ABC for
some matrices A,B,C. If rank(A) = k, prove that rank(X) ≤ k.

(c) For V ∈ Rn×k with orthonormal columns and vector x ∈ Rn, ∥VTx∥2 = ∥x∥2. Always?
Sometimes? Never?

(d) Letting Uk ∈ Rn×k have columns equal to the top k left singular vectors of X and Vk ∈
Rd×k have columns equal to the top k right singular vectors of X, UkU

T
kX = XVkV

T
k .

Always? Sometimes? Never?

(e) Show that for any matrix A with SVD UΣVT ,

∥A∥2F = tr(ATA) = tr(AAT ) = ∥UΣ∥2F = ∥VΣ∥2F =

n∑
i=1

σi(A)2,

where σi(A)2 is the ith singular value of A (the ith diagonal entry of Σ) squared.

(f) Prove the matrix Pythagorean theorem: that if V ∈ Rd×k has orthonormal columns,
then for any matrix X ∈ Rn×d, ∥X−XVVT ∥2F = ∥X∥2F − ∥XVVT ∥2F .

(g) For any V ∈ Rd×k with orthonormal columns, VVT is the projection matrix onto the
subspace spanned by the columns of V (V’s column span). We used this fact many times
when discussing low-rank approximation. Show that VVT = (VVT )(VVT ). Why does
this property make intuitive sense if VVT is a projection?

(h) Let X ∈ Rn×d be a matrix with singular values σ1(X), . . . , σd(X) and SVD X = UΣVT .
What are the eigenvalues of XTX+ λI. What are the corresponding eigenvectors?

(i) Show that if v ∈ Rn is an eigenvector of A ∈ Rn×n with eigenvalue λ, then so is c · v for
any scalar c.

(j) Show that for any symmetric A ∈ Rn×n with eigenvalues λ1(A), . . . , λn(A), and integer
p, the eigenvalues of Ap are equal to λ1(A)p, . . . , λn(A)p.

3. Let X ∈ Rn×d have SVD X = UΣVT with singular values σ1(X), . . . , σd(X).

(a) What are the eigenvalues of the matrix (XTX)2 + (XTX)3? What are its eigenvectors?
How about the matrix (XXT )2 + (XXT )3?

(b) What is the runtime required to compute
[
(XTX)2 + (XTX)3

]
v⃗ for any v⃗ ∈ Rd.

(c) Name one method discussed in class which relies on efficiently applying a polynomial in
XTX to a vector (or more generally, applying a polynomial in a matrix A ∈ Rd×d to a
vector).
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4. What is one reason why you would want to compute a low-rank approximation of a matrix
X ∈ Rn×d?

5. X ∈ R500×50 contains 500 well-clustered data points as its rows. In particular, there are ten
cluster centers y⃗1, . . . , y⃗10 ∈ R50, such that each row x⃗i lies within Euclidean distance at most
1 of a center. Give an upper bound on min

B:rank(B)=10
∥X−B∥2F .

6. Consider two matrices A =

[
1.01 0
0 1

]
or B =

[
1.1 0
0 1

]
.

(a) What are their eigenvalues and eigenvectors?

(b) On which matrix will power method converge more quickly?

7. Let X ∈ Rn×900 have random entries drawn independently in [0, 1]. Let Y ∈ Rn×900 have
rows corresponding to 30× 30 pixel grayscale images of handwritten digits. Let Z ∈ Rn×900

have rows corresponding to 30 × 30 pixel grayscale images of handwritten letters from the
English alphabet. All entries of Y and Z are in [0, 1].

(a) How do you expect
∑900

i=11 σi(X)2,
∑900

i=11 σi(Y)2, and
∑900

i=11 σi(Z)
2 to compare? Explain

why in a few sentences.

(b) Plot a guess at what the spectrums of these three matrices might look like. Do not worry
about the scale of the y axis.

8. A bit challenging: Prove that the kth singular value of any matrixA is bounded as σk(A)2 ≤
∥A∥2F

k . Hint: Use that ∥A∥2F =
∑r

i=1 σi(A)2. Use this to prove that for any integer k > 0

there exists B with rank(B) = k such that ∥A − B∥22 ≤ ∥A∥2F
k+1 . Here ∥bvA − bvB∥2 is the

spectral norm, given by ∥A −B∥2 = maxx:∥x∥2=1 ∥(A −B)x∥2 or equivalently ∥A −B∥2 =
σ1(A−B).

2. Spectral Methods for Graphs

1. Consider a graphG with Laplacian matrix L. Consider the problem: x∗ = argminx:∥x∥=1 x
TLx.

(a) What is x∗? What value of xT∗ Lx∗ does it achieve?

(b) Is the above optimization problem a convex optimization problem? Is it over a convex
constraint set?

2. Consider the normalized adjacency matrix D−1/2AD−1/2 of a connected undirected graph G.
The top eigenvalue of this matrix is λ1(D

−1/2AD−1/2) = 1. Give an expression for the top
eigenvector corresponding to this eigenvalue. Hint: It might be helpful to construct a small
example and find the top eigenvector/value, then back-out a proof.

3. Let G be a d regular graph (i.e., all vertices have d neighbors).

(a) What are the eigenvalues of G’s Laplacian L in terms of the eigenvalues λ1(A), . . . , λd(A)
of its adjacency matrix A?

(b) What are the largest eigenvalue and and eigenvector of G’s adjacency matrix A?

4. Let G be a fully connected graph (a complete graph). What are the eigenvalues of its corre-
sponding adjacency matrix A and Laplacian L?
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5. What is the sum of eigenvalues of the adjacency matrix of a graph with no self-loops? What
is the sum of squared eigenvalues? Challenge question: What is the sum of cubed eigenval-
ues? Hint: The first answer is a fixed number. The second depends on the number of edges
in the graph. The third depends on the number of triangles in the graph.

6. Consider the stochastic block model.

(a) Why is clustering with the second largest eigenvector of the expected adjacency matrix
equivalent to clustering with the second smallest eigenvector of the expected Laplacian?

(b) Are these two approaches identical when clustering using the actual rather than the
expected matrices?

(c) Describe a natural variant of the stochastic block model where these two algorithms
would not be equivalent even on the expected matrices.

7. Describe in a sentence or two the difference between finding a minimum cut and partitioning
a graph with the second smallest Laplacian eigenvector.

8. Consider the datasets below. You must run standard k-means clustering on one and spectral
clustering on the other. Which would you apply each method to? Why?

A B

-4 -3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

9. Consider the two stochastic block model graphs shown below.

(a) Which do you expect to have the largest spectral gap σ1(A)− σ2(A)? Why?

(b) Which do you expect to have the lowest second-smallest Laplacian eigenvalue?

A B
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3. Optimization/Gradient Descent (more on Problem Set 5)

1. The difference of two convex functions f(x) and g(x) (i.e., [f − g](x)) is also convex. Always?
Sometimes? Never?

2. The composition of two convex functions f(x) and g(x) (i.e., [f ◦g](x)) is also convex. Always?
Sometimes? Never?

3. Let S be a convex set and let fS(z⃗) =

{
0 if z⃗ ∈ S
1 if z⃗ /∈ S

. Is fS a convex function? Either prove

that it is, or give a counterexample.

4. The sum of two G-Lipschitz functions is 2G-Lipschitz. Always? Sometimes? Never?

5. The sum of two G-Lipschitz functions is G-Lipschitz. Always? Sometimes? Never?

6. Which of the following loss functions would our analysis of gradient descent for convex Lips-
chitz functions apply to? For each, explain why or why not.

f(θ) =
1

θ
+ θ g(θ) = sin(θ) + θ h(θ) = 3 · |θ − 4|.

7. Let X ∈ Rn×d and y⃗ ∈ Rn be fixed. Let f(θ⃗) = ∥Xθ⃗ − y⃗∥22.

(a) What is ∇⃗f(θ⃗)?

(b) What method other than gradient descent have we learned in class to minimize f(θ⃗)?
What is the optimal solution θ⃗∗?

8. Let f : Rd → R be a G-Lipschitz function.

(a) If θ(i+1) = θ(i) − η∇f(θ(i)), give an upper bound on ∥θ(i+1) − θ(i)∥2.

(b) In our fixed step size gradient algorithm we set t = R2G2

ϵ2
and η = R

G
√
t
. Under these

settings, what is the worst case increase in function value from step i to step i+ 1.

(c) Consider the case of projected gradient descent over a convex set S. So θ(i+1) = PS(θ
out)

for θout = θ(i) − η∇f(θ(i)). Show that the bound of (a) still holds.
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