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summary

Last Class:

• Finish up distinct elements counting. High-level overview of
the HyperLogLog algorithm.

• Introduction of Jaccard similarity and the similarity search
problem.

This Class:

• Locality sensitive hashing and fast similarity search.
• MinHashing for Jaccard similarity search.
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search with jaccard similarity

J(A,B) = |A ∩ B|
|A ∪ B| =

# shared elements
# total elements .

Want Fast Implementations For:

• Near Neighbor Search: Have a database of n sets/bit strings
and given a set A, want to find if it has high Jaccard similarity
to anything in the database. Ω(n) time with a linear scan.

• All-pairs Similarity Search: Have n different sets/bit strings
and want to find all pairs with high Jaccard similarity. Ω(n2)
time if we check all pairs explicitly.
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locality sensitive hashing

Goal: Speed up Jaccard similarity search (near neighbor and
all-pairs similarity search).

Strategy: Locality sensitive hashing (LSH).

• Design a hash function where the collision probability is
higher when two inputs are more similar (can design
different functions for different similarity metrics.)
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lsh for similarity search

How does locality sensitive hashing (LSH) help with similarity
search?

• Near Neighbor Search: Given item x, compute h(x). Only
search for similar items in the h(x) bucket of the hash table.

• All-pairs Similarity Search: Scan through all buckets of the
hash table and look for similar pairs within each bucket.
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minhashing

An Example: Locality sensitive hashing for Jaccard similarity.

MinHash(A): [Andrei Broder, 1997 at Altavista]

• Let h : U→ [0, 1] be a random
hash function

• s := 1

• For x1, . . . , x|A| ∈ A

• s := min(s,h(xk))

• Return s Identical to our distinct elements sketch!
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minhash analysis

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

• Since we are hashing into the continuous range [0, 1], we will never
have h(x) = h(y) for x ̸= y (i.e., no spurious collisions)

• MinHash(A) = MinHash(B) only if an item in A ∩ B has the
minimum hash value in both sets. 6



minhash analysis

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

Claim: MinHash(A) = MinHash(B) only if an item in A ∩ B has the
minimum hash value in both sets.

Pr(MinHash(A) = MinHash(B)) = ?
|A ∩ B|

total # items hashed

=
|A ∩ B|
|A ∪ B| = J(A,B).

Locality sensitive: the higher J(A,B) is, the more likely
MinHash(A),MinHash(B) are to collide. 7



similarity search with minhash

Goal: Given a document y, identify all documents x in a database
with Jaccard similarity (of their shingle sets) J(x, y) ≥ 1/2.

Our Approach:

• Create a hash table of size m, choose a random hash function
g : [0, 1] → [m], and insert every item x into bucket g(MinHash(x)).
Search for items similar to y in bucket g(MinHash(y)).

• What is Pr [g(MinHash(x)) = g(MinHash(y))] assuming J(x, y) = 1/2
and g is collision free?

• For every document x in your database with J(x, y) ≥ 1/2 what is
the probability you will find x in bucket g(MinHash(y))?
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reducing false negatives

With a simple use of MinHash, we miss a match x with J(x, y) = 1/2
with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash t times independently, to produce hash
values MH1(x), . . . ,MHt(x). Apply random hash function g to map all
these values to locations in t hash tables.

• To search for items similar to y, look at all items in bucket
g(MH1(y)) of the 1st table, bucket g(MH2(y)) of the 2nd table, etc.

• What is the probability that x with J(x, y) = 1/2 is in at least one of
these buckets, assuming for simplicity g has no collisions?
1− (probability in no buckets) = 1−

( 1
2
)t ≈ .99 for t = 7.

• What is the probability that x with J(x, y) = 1/4 is in at least one of
these buckets, assuming for simplicity g has no collisions?
1− (probability in no buckets) = 1−

( 3
4
)t ≈ .87 for t = 7.

Potential for a lot of false positives! Slows down search time. 9



balancing hit rate and query time

We want to balance a small probability of false negatives (a high hit
rate) with a small probability of false positives (a small query time.)

Create t hash tables. Each is indexed into not with a single MinHash
value, but with r values, appended together. A length r signature. 10



balancing hit rate and query time

Consider searching for matches in t hash tables, using MinHash
signatures of length r. For x and y with Jaccard similarity J(x, y) = s:

• Probability that a single hash matches.
Pr

[
MHi,j(x) = MHi,j(y)

]
= J(x, y) = s.

• Probability that x and y having matching signatures in repetition i.
Pr

[
MHi,1(x), . . . ,MHi,r(x) = MHi,1(y), . . . ,MHi,r(y)

]
= sr.

• Probability that x and y don’t match in repetition i: 1− sr.

• Probability that x and y don’t match in all repetitions: (1− sr)t.

• Probability that x and y match in at least one repetition:

Hit Probability: 1− (1− sr)t.

11



the s-curve

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x, y) = s match in at
least one repetition is: 1− (1− sr)t.
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r and t are tuned depending on application. ‘Threshold’ when hit
probability is 1/2 is ≈ (1/t)1/r. E.g., ≈ (1/30)1/5 = .51 in this case.

12



s-curve example

For example: Consider a database with 10, 000, 000 audio clips. You
are given a clip x and want to find any y in the database with
J(x, y) ≥ .9.

• There are 10 true matches in the database with J(x, y) ≥ .9.
• There are 10, 000 near matches with J(x, y) ∈ [.7, .9].

With signature length r = 25 and repetitions t = 50, hit probability
for J(x, y) = s is 1− (1− s25)50.

• Hit probability for J(x, y) ≥ .9 is ≥ 1− (1− .925)50 ≈ .98
• Hit probability for J(x, y) ∈ [.7, .9] is ≤ 1− (1− .925)50 ≈ .98
• Hit probability for J(x, y) ≤ .7 is ≤ 1− (1− .725)50 ≈ .007

Expected Number of Items Scanned: (proportional to query time)

≤ 10+ .98 ∗ 10, 000+ .007 ∗ 9, 989, 990 ≈ 80, 000≪ 10, 000, 000.
13



hashing for duplicate detection

All different variants of detecting duplicates/finding matches
in large datasets. An important problem in many contexts!
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generalizing locality sensitive hashing

Repetition and s-curve tuning can be used for fast similarity search
with any similarity metric, given a locality sensitive hash function for
that metric.
• LSH schemes exist for many similarity/distance measures:
hamming distance, cosine similarity, etc.

Cosine Similarity: cos(θ(x, y)) = ⟨x,y⟩
∥x∥2·∥y∥2 .

• cos(θ(x, y)) = 1 when θ(x, y) = 0◦ and cos(θ(x, y)) = 0 when
θ(x, y) = 90◦, and cos(θ(x, y)) = −1 when θ(x, y) = 180◦

15


