# COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 9

# Last Class:

- Finish up distinct elements counting. High-level overview of the HyperLogLog algorithm.
- Introduction of Jaccard similarity and the similarity search problem.

# This Class:

- $\cdot\,$  Locality sensitive hashing and fast similarity search.
- MinHashing for Jaccard similarity search.

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\# \text{ shared elements}}{\# \text{ total elements}}.$$

## Want Fast Implementations For:

- Near Neighbor Search: Have a database of *n* sets/bit strings and given a set *A*, want to find if it has high Jaccard similarity to anything in the database.  $\Omega(n)$  time with a linear scan.
- All-pairs Similarity Search: Have *n* different sets/bit strings and want to find all pairs with high Jaccard similarity.  $\Omega(n^2)$ time if we check all pairs explicitly.

**Goal:** Speed up Jaccard similarity search (near neighbor and all-pairs similarity search).

Strategy: Locality sensitive hashing (LSH).

• Design a hash function where the collision probability is higher when two inputs are more similar (can design different functions for different similarity metrics.)





## LSH FOR SIMILARITY SEARCH

How does locality sensitive hashing (LSH) help with similarity search?



- Near Neighbor Search: Given item x, compute h(x). Only search for similar items in the h(x) bucket of the hash table.
- All-pairs Similarity Search: Scan through all buckets of the hash table and look for similar pairs within each bucket.

An Example: Locality sensitive hashing for Jaccard similarity. MinHash(A): [Andrei Broder, 1997 at Altavista]

- Let  $\mathbf{h}: U \to [0, 1]$  be a random hash function
- s := 1
- For  $x_1, \ldots, x_{|A|} \in A$ 
  - $\cdot$  s := min(s, h(x\_k))
- Return **s**

Identical to our distinct elements sketch!



#### MINHASH ANALYSIS

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

• Since we are hashing into the continuous range [0, 1], we will never have h(x) = h(y) for  $x \neq y$  (i.e., no spurious collisions)



• MinHash(A) = MinHash(B) only if an item in  $A \cap B$  has the minimum hash value in both sets.

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

**Claim:** MinHash(A) = MinHash(B) only if an item in  $A \cap B$  has the minimum hash value in both sets.



Locality sensitive: the higher *J*(*A*, *B*) is, the more likely *MinHash*(*A*), *MinHash*(*B*) are to collide.

**Goal:** Given a document *y*, identify all documents *x* in a database with Jaccard similarity (of their shingle sets)  $J(x, y) \ge 1/2$ .

## Our Approach:

• Create a hash table of size m, choose a random hash function  $\mathbf{g} : [0, 1] \rightarrow [m]$ , and insert every item x into bucket  $\mathbf{g}(MinHash(x))$ . Search for items similar to y in bucket  $\mathbf{g}(MinHash(y))$ .



• What is  $\Pr[g(MinHash(x)) = g(MinHash(y))]$  assuming J(x, y) = 1/2 8

With a simple use of MinHash, we miss a match x with J(x, y) = 1/2 with probability 1/2. How can we reduce this false negative rate?

**Repetition:** Run MinHash *t* times independently, to produce hash values  $MH_1(x), \ldots, MH_t(x)$ . Apply random hash function **g** to map all these values to locations in *t* hash tables.

- To search for items similar to y, look at all items in bucket  $g(MH_1(y))$  of the 1<sup>st</sup> table, bucket  $g(MH_2(y))$  of the 2<sup>nd</sup> table, etc.
- What is the probability that x with J(x, y) = 1/2 is in at least one of these buckets, assuming for simplicity **g** has no collisions? 1– (probability in *no* buckets) = 1 –  $\left(\frac{1}{2}\right)^t \approx .99$  for t = 7.
- What is the probability that x with J(x, y) = 1/4 is in at least one of these buckets, assuming for simplicity **g** has no collisions? 1– (probability in *no* buckets) =  $1 - (\frac{3}{4})^t \approx .87$  for t = 7.

Potential for a lot of false positives! Slows down search time.

We want to balance a small probability of false negatives (a high hit rate) with a small probability of false positives (a small query time.)



Create *t* hash tables. Each is indexed into not with a single MinHash value, but with *r* values, appended together. A length *r* signature.

Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity J(x, y) = s:

- Probability that a single hash matches. Pr  $[MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s.$
- Probability that x and y having matching signatures in repetition *i*. Pr  $[MH_{i,1}(x), \dots, MH_{i,r}(x) = MH_{i,1}(y), \dots, MH_{i,r}(y)] = s^r$ .
- Probability that x and y don't match in repetition i:  $1 s^r$ .
- Probability that x and y don't match in all repetitions:  $(1 s^r)^t$ .
- Probability that *x* and *y* match in at least one repetition:

Hit Probability:  $1 - (1 - s^r)^t$ .

#### THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity J(x, y) = s match in at least one repetition is:  $1 - (1 - s^r)^t$ .



*r* and *t* are tuned depending on application. 'Threshold' when hit probability is 1/2 is  $\approx (1/t)^{1/r}$ . E.g.,  $\approx (1/30)^{1/5} = .51$  in this case.

12

#### S-CURVE EXAMPLE

For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with  $J(x, y) \ge .9$ .

- There are 10 true matches in the database with  $J(x, y) \ge .9$ .
- There are 10,000 near matches with  $J(x, y) \in [.7, .9]$ .

With signature length r = 25 and repetitions t = 50, hit probability for J(x, y) = s is  $1 - (1 - s^{25})^{50}$ .

- Hit probability for  $J(x, y) \ge .9$  is  $\ge 1 (1 .9^{25})^{50} \approx .98$
- Hit probability for  $J(x, y) \in [.7, .9]$  is  $\le 1 (1 .9^{25})^{50} \approx .98$
- Hit probability for J(x, y)  $\leq .7$  is  $\leq 1 (1 .7^{25})^{50} \approx .007$

# Expected Number of Items Scanned: (proportional to query time) $< 10 + .98 * 10,000 + .007 * 9,989,990 \approx 80,000 \ll 10,000,000.$

### HASHING FOR DUPLICATE DETECTION

|                            | Hash Table                                                            | Bloom Filters                                     | MinHash<br>Similarity Search                                          | Distinct<br>Elements                             |
|----------------------------|-----------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|
| Goal                       | Check if x is a<br>duplicate of any<br>y in database<br>and return y. | Check if x is a<br>duplicate of y<br>in database. | Check if x is a<br>duplicate of any y<br>in database and<br>return y. | Count # of<br>items,<br>excluding<br>duplicates. |
| Space                      | O(n) items                                                            | O(n) bits                                         | $O(n \cdot t)$ items (when t tables used)                             | $O\left(\frac{\log\log n}{\epsilon^2}\right)$    |
| Query Time                 | 0(1)                                                                  | 0(1)                                              | Potentially $o(n)$                                                    | NA                                               |
| Approximate<br>Duplicates? | X                                                                     | ×                                                 | ~                                                                     | X                                                |

All different variants of detecting duplicates/finding matches in large datasets. An important problem in many contexts!

Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

• LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.



Cosine Similarity:  $\cos(\theta(x, y)) = \frac{\langle x, y \rangle}{\|x\|_2 \cdot \|y\|_2}$ .

•  $\cos(\theta(x, y)) = 1$  when  $\theta(x, y) = 0^{\circ}$  and  $\cos(\theta(x, y)) = 0$  when  $\theta(x, y) = 90^{\circ}$ , and  $\cos(\theta(x, y)) = -1$  when  $\theta(x, y) = 180^{\circ}$