- Problem Set 1 is due this Friday at 8pm in Gradescope.
- My office hours have moved to Thursday 5-6pm on Zoom.
LAST TIME

Last Class:

• Exponential concentration bounds – Bernstein and Chernoff
• Connection to the central limit theorem

This Class:

• Bloom filters: random hashing to maintain a large set in small space.
• Possibly start on distinct items counting
Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support $\text{insert}(x)$ to add x to the set and $\text{query}(x)$ to check if x is in the set. Both in $O(1)$ time. What data structure solves this problem?

- Allow small probability $\delta > 0$ of false positives. I.e., for any x,

$$\Pr(\text{query}(x) = 1 \text{ and } x \notin S) \leq \delta.$$

Solution: Bloom filters (repeated random hashing). Will use much less space than a hash table.
BLOOM FILTERS

Chose k independent random hash functions h_1, \ldots, h_k mapping the universe of elements $U \rightarrow [m]$.

- Maintain an array A containing m bits, all initially 0.
- $insert(x)$: set all bits $A[h_1(x)] = \ldots = A[h_k(x)] := 1$.
- $query(x)$: return 1 only if $A[h_1(x)] = \ldots = A[h_k(x)] = 1$.

No false negatives. False positives more likely with more insertions.
Akamai (Boston-based company serving 15 – 30% of all web traffic) applies bloom filters to prevent caching of ‘one-hit-wonders’ – pages only visited once fill over 75% of cache.

- When url x comes in, if $\text{query}(x) = 1$, cache the page at x. If not, run $\text{insert}(x)$ so that if it comes in again, it will be cached.

- **False positive:** A new url (possible one-hit-wonder) is cached. If the bloom filter has a false positive rate of $\delta = .05$, the number of cached one-hit-wonders will be reduced by at least 95%.
Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.

- When a new rating is inserted for \((user_x, movie_y)\), add \((user_x, movie_y)\) to a bloom filter.
- Before reading \((user_x, movie_y)\) (possibly requiring an out of memory access), check the bloom filter, which is stored in memory.
- **False positive:** A read is made to a possibly empty cell. A \(\delta = .05\) false positive rate gives a 95% reduction in these empty reads.
MORE APPLICATIONS

- **Database Joins**: Quickly eliminate most keys in one column that don’t correspond to keys in another.

- **Recommendation systems**: Bloom filters are used to prevent showing users the same recommendations twice.

- **Spam/Fraud Detection**:
 - Bit.ly and Google Chrome use bloom filters to quickly check if a url maps to a flagged site and prevent a user from following it.
 - Can be used to detect repeat clicks on the same ad from a single IP-address, which may be the result of fraud.

- **Digital Currency**: Some Bitcoin clients use bloom filters to quickly pare down the full transaction log to transactions involving bitcoin addresses that are relevant to them (SPV: simplified payment verification).
For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0? $n \times k$ total hashes must not hit bit i.

$$
\Pr(A[i] = 0) = \Pr(h_1(x_1) \neq i \cap \ldots \cap h_k(x_k) \neq i \\
\cap h_1(x_2) \neq i \ldots \cap h_k(x_2) \neq i \cap \ldots) \\
= \Pr(h_1(x_1) \neq i) \times \ldots \times \Pr(h_k(x_1) \neq i) \times \Pr(h_1(x_2) \neq i) \ldots \\
= \left(1 - \frac{1}{m}\right)^{kn}
$$
How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$\Pr (A[h_1(w)] = \ldots = A[h_k(w)] = 1) = \Pr(A[h_1(w)] = 1) \times \ldots \times \Pr(A[h_k(w)] = 1)$$

$$= \left(1 - e^{-\frac{kn}{m}}\right)^k \quad \text{Actually Incorrect! Dependent events.}$$

n: total number items in filter, m: number of bits in filter, k: number of random hash functions, $h_1, \ldots h_k$: hash functions, A: bit array, δ: false positive rate.
Step 1: To avoid dependence issues, condition on the event that the A has t zeros in it after n insertions, for some $t \leq m$. For a non-inserted element w, after conditioning on this event we correctly have:

$$\Pr(A[h_1(w)] = \ldots = A[h_k(w)] = 1) = \Pr(A[h_1(w)] = 1) \times \ldots \times \Pr(A[h_k(w)] = 1).$$

I.e., the events $A[h_1(w)] = 1, \ldots, A[h_k(w)] = 1$ are independent conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since h_j is a fully random hash function, $\Pr(A[h_j(w)] = 1) = 1 - \frac{t}{m}$.
- Thus conditioned on this event, the false positive rate is $(1 - \frac{t}{m})^k$.
- It remains to show that $\frac{t}{m} \approx e^{-\frac{kn}{m}}$ with high probability. We already have that $\mathbb{E}[\frac{t}{m}] = \frac{1}{m} \sum_{i=1}^{m} \Pr(A[i] = 0) \approx e^{-\frac{kn}{m}}$.

CORRECT ANALYSIS SKETCH

Need to show that the number of zeros t in A after n insertions is bounded by $O\left(e^{-\frac{kn}{m}}\right)$ with high probability.

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx \left(1 - e^{-\frac{kn}{m}}\right)^k$.

- We have 100 million users and 10,000 movies. On average each user has rated only 10 movies so of these 10^{12} possible (user,movie) pairs, only $10 \times 100,000,000 = 10^9 = n$ (user,movie) pairs have non-empty entries in our table.

- We allocate $m = 8n = 8 \times 10^9$ bits for a Bloom filter (1 GB). How should we set k to minimize the number of false positives?
False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx \left(1 - e^{-\frac{kn}{m}}\right)^k$.

- $n = 10^9 = n$ (user,movie) pairs with non-empty entries in our table.
- $m = 8n = 8 \times 10^9$ bits for a Bloom filter (1 GB).
- Set $k = \ln 2 \cdot \frac{m}{n} = 5.54 \approx 6$.
- False positive rate is $\approx \left(1 - e^{-k\cdot\frac{n}{m}}\right)^k \approx \frac{1}{2^k} \approx \frac{1}{2^{5.54}} = .021$.
An observation about Bloom filter space complexity:

False Positive Rate: \(\delta \approx \left(1 - e^{-\frac{kn}{m}}\right)^k. \)

For an \(m \)-bit bloom filter holding \(n \) items, optimal number of hash functions \(k \) is: \(k = \ln 2 \cdot \frac{m}{n}. \)

Think Pair Share: If we want a false positive rate < \(\frac{1}{2} \) how big does \(m \) need to be in comparison to \(n \)?

\[m = O(\log n), \ m = O(\sqrt{n}), \ m = O(n), \ m = O(n^2)? \]

If \(m = \frac{n}{\ln 2} \), optimal \(k = 1 \), and failure rate is:

\[\delta = \left(1 - e^{-\frac{n}{\ln 2}}\right)^1 = \left(1 - \frac{1}{2}\right)^1 = \frac{1}{2}. \]

I.e., storing \(n \) items in a bloom filter requires \(O(n) \) space. So what’s the point? **Truly** \(O(n) \) bits, rather than \(O(n \cdot \text{item size}) \).
Questions on Bloom Filters?