
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2021.
Lecture 6

0

logistics

• Problem Set 1 is due this Friday at 8pm in Gradescope.
• My office hours have moved to Thursday 5-6pm on Zoom.

1

last time

Last Class:

• Exponential concentration bounds – Bernstein and Chernoff
• Connection to the central limit theorem

This Class:

• Bloom filters: random hashing to maintain a large set in
small space.

• Possibly start on distinct items counting

2

approximately maintaining a set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

• Allow small probability δ > 0 of false positives. I.e., for any x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

3

bloom filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U→ [m].

• Maintain an array A containing m bits, all initially 0.
• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.
• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions. 4

applications: caching

Akamai (Boston-based company serving 15− 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ – pages
only visited once fill over 75% of cache.

• When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of δ = .05, the number of
cached one-hit-wonders will be reduced by at least 95%.

5

applications: databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

• When a new rating is inserted for (userx,moviey), add
(userx,moviey) to a bloom filter.

• Before reading (userx,moviey) (possibly requiring an out of
memory access), check the bloom filter, which is stored in memory.

• False positive: A read is made to a possibly empty cell. A δ = .05
false positive rate gives a 95% reduction in these empty reads. 6

more applications

• Database Joins: Quickly eliminate most keys in one column that
don’t correspond to keys in another.

• Recommendation systems: Bloom filters are used to prevent
showing users the same recommendations twice.

• Spam/Fraud Detection:
• Bit.ly and Google Chrome use bloom filters to quickly check if a
url maps to a flagged site and prevent a user from following it.

• Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

• Digital Currency: Some Bitcoin clients use bloom filters to quickly
pare down the full transaction log to transactions involving bitcoin
addresses that are relevant to them (SPV: simplified payment
verification).

7

analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith
bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) ̸= i ∩ . . . ∩ hk(xk) ̸= i

∩ h1(x2) ̸= i . . . ∩ hk(x2) ̸= i ∩ . . .
)

= Pr
(
h1(x1) ̸= i)× . . .× Pr

(
hk(x1) ̸= i)× Pr

(
h1(x2) ̸= i) . . .︸ ︷︷ ︸

k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

8

analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith
bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn
≈ e− kn

m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)
= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 9

correct analysis sketch

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t ≤ m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(A[h1(w)] = . . . = A[hk(w)] = 1)
= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1).

I.e., the events A[h1(w)] = 1,…, A[hk(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

• Conditioned on this event, for any j, since hj is a fully random hash
function, Pr(A[hj(w)] = 1) = 1− t

m .

• Thus conditioned on this event, the false positive rate is
(
1− t

m
)k.

• It remains to show that t
m ≈ e− kn

m with high probability. We already
have that E[tm] =

1
m
∑m

i=1 Pr(A[i] = 0) ≈ e− kn
m .

10

correct analysis sketch

Need to show that the number of zeros t in A after n insertions
is bounded by O

(
e− kn

m

)
with high probability.

Can apply Theorem 2 of: http://cglab.ca/~morin/
publications/ds/bloom-submitted.pdf

11

http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf
http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

false positive rate

False Positive Rate: with m bits of storage, k hash functions, and n
items inserted δ ≈

(
1− e−kn

m

)k
.

• We have 100 million users and 10, 000 movies. On average each
user has rated only 10 movies so of these 1012 possible
(user,movie) pairs, only 10 ∗ 100, 000, 000 = 109 = n (user,movie)
pairs have non-empty entries in our table.

• We allocate m = 8n = 8× 109 bits for a Bloom filter (1 GB). How
should we set k to minimize the number of false positives?

0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

• Can differentiate to show optimal number of hashes is k = ln 2 · mn .
• Balances between filling up the array with too many hashes and
having enough hashes so that even when the array is pretty full, a
new item is unlikely to have all its bits set (yield a false positive)

12

false positive rate

False Positive Rate: with m bits of storage, k hash functions, and n
items inserted δ ≈

(
1− e−kn

m

)k
.

• n = 109 = n (user,movie) pairs with non-empty entries in our table.

• m = 8n = 8× 109 bits for a Bloom filter (1 GB).

• Set k = ln 2 · mn = 5.54 ≈ 6.

• False positive rate is ≈
(
1− e−k· nm

)k ≈ 1
2k ≈ 1

25.54 = .021.

13

bloom filter note

An observation about Bloom filter space complexity:

False Positive Rate: δ ≈
(
1− e−

kn
m

)k
.

For an m-bit bloom filter holding n items, optimal number of
hash functions k is: k = ln 2 · mn .

Think Pair Share: If we want a false positive rate < 1
2 how big

does m need to be in comparison to n?

m = O(logn), m = O(
√
n), m = O(n), m = O(n2)?

If m = n
ln 2 , optimal k = 1, and failure rate is:

δ =
(
1− e−

n/ ln 2
n

)1
=

(
1− 1

2

)1
=
1
2 .

I.e., storing n items in a bloom filter requires O(n) space. So
what’s the point? Truly O(n) bits, rather than O(n · item size). 14

Questions on Bloom Filters?

15

