COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 6

LOGISTICS

I assign m represts to K sevens
severe locks are
$$R_{1,1}R_{2,...}R_{k}$$

 $Vcr(R_{1}+R_{2}+...R_{k}) = O \neq Var(R_{1})+...Var(R_{k})$

- Problem Set 1 is due this Friday at 8pm in Gradescope.
- My office hours have moved to Thursday 5-6pm on Zoom.

Last Class:

- · Exponential concentration bounds Bernstein and Chernoff
- · Connection to the central limit theorem

This Class:

- Bloom filters: random hashing to maintain a large set in small space.
- Possibly start on distinct items counting

Goal: support *insert*(*x*) to add *x* to the set and *query*(*x*) to check if *x* is in the set. Both in *O*(1) time.

Goal: support *insert*(x) to add x to the set and *query*(x) to check if x is in the set. Both in O(1) time. What data structure solves this problem?

Goal: support *insert*(*x*) to add *x* to the set and *query*(*x*) to check if *x* is in the set. Both in *O*(1) time. What data structure solves this problem?

· Allow small probability $\delta > 0$ of false positives. I.e., for any x,

$$Pr(query(x) = 1 \text{ and } x \notin S) \leq \delta.$$

Goal: support *insert*(*x*) to add *x* to the set and *query*(*x*) to check if *x* is in the set. Both in *O*(1) time. What data structure solves this problem?

· Allow small probability $\delta > 0$ of false positives. I.e., for any x,

$$Pr(query(x) = 1 \text{ and } x \notin S) \leq \delta.$$

Solution: Bloom filters (repeated random hashing). Will use much less space than a hash table.

Chose *k* independent random hash functions $\mathbf{h}_1, \ldots, \mathbf{h}_k$ mapping the universe of elements $U \rightarrow [m]$.

• Maintain an array A containing *m* bits, all initially 0.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

Chose k independent random hash functions $\mathbf{h}_1, \ldots, \mathbf{h}_k$ mapping the universe of elements $U \rightarrow [m]$.

- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

No false negatives. False positives more likely with more insertions.

Akamai (Boston-based company serving 15 - 30% of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' – pages only visited once fill over 75% of cache.

Akamai (Boston-based company serving 15 - 30% of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' – pages only visited once fill over 75% of cache.

• When url x comes in, if query(x) = 1, cache the page at x. If not, run *insert*(x) so that if it comes in again, it will be cached.

Akamai (Boston-based company serving 15 – 30% of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' – pages only visited once fill over 75% of cache.

- When url x comes in, if query(x) = 1, cache the page at x. If not, run *insert*(x) so that if it comes in again, it will be cached.
- False positive: A new url (possible one-hit-wonder) is cached. If the bloom filter has a false positive rate of $\delta = .05$, the number of cached one-hit-wonders will be reduced by at least 95%.

- When a new rating is inserted for (user_x, movie_y), add (user_x, movie_y) to a bloom filter.
- Before reading (*user_x*, *movie_y*) (possibly requiring an out of memory access), check the bloom filter, which is stored in memory.

- When a new rating is inserted for (user_x, movie_y), add (user_x, movie_y) to a bloom filter.
- Before reading (*user_x*, *movie_y*) (possibly requiring an out of memory access), check the bloom filter, which is stored in memory.
- False positive: A read is made to a possibly empty cell. A $\delta = .05$ false positive rate gives a 95% reduction in these empty reads.

MORE APPLICATIONS

- **Database Joins:** Quickly eliminate most keys in one column that don't correspond to keys in another.
- **Recommendation systems:** Bloom filters are used to prevent showing users the same recommendations twice.
- · Spam/Fraud Detection:
 - Bit.ly and Google Chrome use bloom filters to quickly check if a url maps to a flagged site and prevent a user from following it.
 - Can be used to detect repeat clicks on the same ad from a single IP-address, which may be the result of fraud.
- **Digital Currency:** Some Bitcoin clients use bloom filters to quickly pare down the full transaction log to transactions involving bitcoin addresses that are relevant to them (SPV: simplified payment verification).

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k).

For a bloom filter with *m* bits and *k* hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on *m*, *k*, and the number of items inserted?

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0?

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0? $n \times k$ total hashes must not hit bit *i*.

$$\Pr(A[i] = 0) = \Pr\left(\underbrace{\mathbf{h}_1(x_1) \neq i \cap \ldots \cap \mathbf{h}_k(x_k) \neq i}_{\cap \mathbf{h}_1(x_2) \neq i \ldots \cap \mathbf{h}_k(x_2) \neq i \cap \ldots} \begin{array}{c} \mathsf{K} \bullet \mathsf{K} \end{array}\right)$$

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0? $n \times k$ total hashes must not hit bit *i*.

$$\Pr(A[i] = 0) = \Pr(\mathbf{h}_1(x_1) \neq i \cap \dots \cap \mathbf{h}_k(x_k) \neq i$$

$$\cap \mathbf{h}_1(x_2) \neq i \dots \cap \mathbf{h}_k(x_2) \neq i \cap \dots)$$

$$= \underbrace{\Pr(\mathbf{h}_1(x_1) \neq i) \times \dots \times \Pr(\mathbf{h}_k(x_1) \neq i) \times \Pr(\mathbf{h}_1(x_2) \neq i) \dots}_{\substack{k \cdot n \text{ events each occuring with probability } 1-1/m} : \underbrace{m^{-1}_{m}}_{m}}$$

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0? $n \times k$ total hashes must not hit bit *i*.

$$\Pr(A[i] = 0) = \Pr\left(\underbrace{\mathbf{h}_{1}(x_{1}) \neq i}_{k \neq 1} \cap \dots \cap \mathbf{h}_{k}(x_{k}) \neq i \\ = \underbrace{\Pr\left(\mathbf{h}_{1}(x_{1}) \neq i\right)}_{k \cdot n \text{ events each occuring with probability, } 1 - 1/m} = \left(1 - \frac{1}{m}\right)^{kn}$$

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn}$$

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0?

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0?

$$\Pr(A[i]=0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item *w* gives a false positive?

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item *w* gives a false positive?

$$\Pr\left(\underline{A[\mathbf{h}_{1}(w)]} = \dots = A[\underline{\mathbf{h}_{k}(w)}] = 1\right)$$
$$= \Pr(\underline{A[\mathbf{h}_{1}(w)]} = 1) \times \dots \times \Pr(A[\underline{\mathbf{h}_{k}(w)}] = 1)$$

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item *w* gives a false positive?

$$\Pr \left(A[\mathbf{h}_1(w)] = \dots = A[\mathbf{h}_k(w)] = 1 \right)$$

=
$$\Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_k(w)] = 1)$$

=
$$\left(\underbrace{1 - e^{-\frac{k\pi}{m}}}_{} \right)^{\frac{k}{2}}$$

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item w gives afalse positive?

$$\Pr(A[\mathbf{h}_{1}(w)] = \dots = A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

$$\Pr(A[\mathbf{h}_{1}(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_{k}(w)] = 1)$$

n: total number items in filter, *m*: number of bits in filter, *k*: number of random hash functions, h_1, \ldots, h_k : hash functions, *A*: bit array, δ : false positive rate.

indución exprisión

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \left(e^{-\frac{kn}{m}}\right)$$

Step 2: What is the probability that querying a new item *w* gives a false positive?

$$\begin{aligned} \Pr\left(A[\mathbf{h}_1(w)] &= \dots = A[\mathbf{h}_k(w)] = 1\right) \\ &= \Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_k(w)] = 1) \\ &= \left(1 - e^{-\frac{kn}{m}}\right)^k \quad \text{Actually Incorrect! Dependent events.} \end{aligned}$$

Step 1: To avoid dependence issues, condition on the event that the A has t zeros in it after n insertions, for some $t \le m$. For a non-inserted element w, after conditioning on this event we correctly have:

$$Pr(A[\mathbf{h}_1(w)] = \dots = A[\mathbf{h}_k(w)] = 1)$$

=
$$Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times Pr(A[\mathbf{h}_k(w)] = 1).$$

I.e., the events $A[\mathbf{h}_1(w)] = 1,..., A[\mathbf{h}_k(w)] = 1$ are independent conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any *j*, since \mathbf{h}_j is a fully random hash function, $Pr(A[\mathbf{h}_j(w)] = 1) = \frac{t}{m}$.
- Thus conditioned on this event, the false positive rate is $\left(1 \frac{t}{m}\right)^k$.
- It remains to show that $\frac{t}{m} \approx e^{-\frac{kn}{m}}$ with high probability. We already have that $\mathbb{E}[\frac{t}{m}] = \frac{1}{m} \sum_{i=1}^{m} \Pr(A[i] = 0) \approx e^{-\frac{kn}{m}}$.

Need to show that the number of zeros t in A after n insertions is bounded by $O\left(e^{-\frac{kn}{m}}\right)$ with high probability.

Can apply Theorem 2 of: http://cglab.ca/~morin/
publications/ds/bloom-submitted.pdf

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$.

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$.

- We have 100 million users and 10,000 movies. On average each user has rated only 10 movies so of these 10^{12} possible (user,movie) pairs, only 10 * 100,000,000 = 10^9 = n (user,movie) pairs have non-empty entries in our table.
- We allocate $m = 8n = 8 \times 10^9$ bits for a Bloom filter (1 GB).

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$.

- We have 100 million users and 10,000 movies. On average each user has rated only 10 movies so of these 10^{12} possible (user,movie) pairs, only $10 * 100,000,000 = 10^9 = n$ (user,movie) pairs have non-empty entries in our table.
- We allocate $m = 8n = 8 \times 10^9$ bits for a Bloom filter (1 GB). How should we set k to minimize the number of false positives?

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$.

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$.

• Can differentiate to show optimal number of hashes is $k = \underbrace{\ln 2}_{n} \cdot \underbrace{\frac{m}{n}}_{n}$.

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx (1 - e^{\frac{-kn}{m}})^k$.

- Can differentiate to show optimal number of hashes is $k \neq \ln 2 \cdot \frac{m}{n}$.
- Balances between filling up the array with too many hashes and having enough hashes so that even when the array is pretty full, a new item is unlikely to have all its bits set (yield a false positive)

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$.

- $n = 10^9 = n$ (user, movie) pairs with non-empty entries in our table.
- $m = 8n = 8 \times 10^9$ bits for a Bloom filter (1 GB).

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$.

- $n = 10^9 = n$ (user, movie) pairs with non-empty entries in our table.
- $m = 8n = 8 \times 10^9$ bits for a Bloom filter (1 GB).

• Set
$$k = \ln 2 \cdot \frac{m}{n} = 5.54 \approx 6.$$

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$.

 5
 1
 4

 3
 5

 4

 5
 5
 5

 1
 2
 5

- $n = 10^9 = n$ (user, movie) pairs with non-empty entries in our table.
- $m = 8n = 8 \times 10^9$ bits for a Bloom filter (1 GB).
- Set $k = \ln 2 \cdot \frac{m}{n} = 5.54 \approx 6$.
- False positive rate is $\approx (1 e^{-k \cdot \frac{n}{m}})^k$

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$.

- $n = 10^9 = n$ (user, movie) pairs with non-empty entries in our table.
- $m = 8n = 8 \times 10^9$ bits for a Bloom filter (1 GB).
- Set $k = \underbrace{\ln 2 \cdot \frac{m}{n}}_{n} = 5.54 \approx 6.$ • False positive rate is $\approx \underbrace{\left(1 - e^{-k \cdot \frac{m}{m}}\right)^{k}}_{\left(1 - e^{-k \cdot \frac{m}{m}}\right)^{k}} \approx \frac{1}{2^{k}} \left(1 - \frac{1}{2}\right)^{k} \left(1 - \frac{1}{2^{k}}\right)^{k}$

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$.

 5
 1
 4

 3
 5

 4

 5
 5
 5

 1
 2
 5

- $n = 10^9 = n$ (user, movie) pairs with non-empty entries in our table.
- $m = 8n = 8 \times 10^9$ bits for a Bloom filter (1 GB).
- Set $k = \ln 2 \cdot \frac{m}{n} = 5.54 \approx 6$.

• False positive rate is
$$\approx (1 - e^{-k \cdot \frac{n}{m}})^k \approx \frac{1}{2^k} \approx \frac{1}{2^{5.54}} = 0.021.$$

False Positive Rate:
$$\delta \approx \left(1 - e^{-\frac{kn}{m}}\right)^k$$

For an *m*-bit bloom filter holding *n* items, optimal number of hash functions *k* is: $k = \ln 2 \cdot \frac{m}{n}$.

-False Positive Rate:
$$\delta \approx \left(1 - e^{-\frac{kn}{m}}\right)^k$$

For an *m*-bit bloom filter holding *n* items, optimal number of hash functions *k* is: $k = \ln 2 \cdot \frac{m}{n}$.

Think Pair Share: If we want a false positive rate $<\frac{1}{2}$ how big does *m* need to be in comparison to *n*?

$$m = O(\log n), \ m = O(\sqrt{n}), \ m = O(n), \ m = O(n^2)?$$

False Positive Rate:
$$\delta pprox \left(1 - e^{-rac{kn}{m}}
ight)^k$$

For an *m*-bit bloom filter holding *n* items, optimal number of hash functions *k* is: $k = \ln 2 \cdot \frac{m}{n}$.

Think Pair Share: If we want a false positive rate $<\frac{1}{2}$ how big does *m* need to be in comparison to <u>n</u>?

$$m = O(\log n), \ m = O(\sqrt{n}), \ m = O(n), \ m = O(n^2)?$$

If $m = \frac{n}{\ln 2}$, optimal $k = 1$, and failure rate is:
$$\delta = \left(1 - e^{-\frac{n/\ln 2}{n}}\right)^1 = \left(1 - \frac{1}{2}\right)^1 = \frac{1}{2}$$

False Positive Rate:
$$\delta \approx \left(1 - e^{-\frac{kn}{m}}\right)^k$$

For an *m*-bit bloom filter holding *n* items, optimal number of hash functions *k* is: $k = \ln 2 \cdot \frac{m}{n}$.

Think Pair Share: If we want a false positive rate $<\frac{1}{2}$ how big does *m* need to be in comparison to *n*?

$$m = O(\log n), \ m = O(\sqrt{n}), \ m = O(n^2), \ m = O(n^2)?$$

If $m = \frac{n}{\ln 2}$, optimal k = 1, and failure rate is:

$$\delta = \left(1 - e^{-\frac{n/\ln 2}{n}}\right)^1 = \left(1 - \frac{1}{2}\right)^1 = \frac{1}{2}$$

I.e., storing n items in a bloom filter requires O(n) space. So what's the point?

False Positive Rate:
$$\delta \approx \left(1 - e^{-\frac{kn}{m}}\right)^k$$

For an *m*-bit bloom filter holding *n* items, optimal number of hash functions *k* is: $k = \ln 2 \cdot \frac{m}{n}$.

Think Pair Share: If we want a false positive rate $<\frac{1}{2}$ how big does *m* need to be in comparison to *n*?

$$m = O(\log n), \ m = O(\sqrt{n}), \ m = O(n^2), \ m = O(n^2)?$$

If $m = \frac{n}{\ln 2}$, optimal k = 1, and failure rate is:

$$\delta = \left(1 - e^{-\frac{n/\ln 2}{n}}\right)^1 = \left(1 - \frac{1}{2}\right)^1 = \frac{1}{2}$$

I.e., storing *n* items in a bloom filter requires O(n) space. So what's the point? Truly O(n) bits, rather than $O(n \cdot \text{item size})$.

