COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Fall 2021.
Lecture 6

LOGISTICS
I assign m rapuests to K sewers Server loads are $R_{1}, R_{2} \cdots R_{k}$

$$
\operatorname{Var}\left(R_{1}+R_{2}+\ldots R_{k}\right)=0 \neq \operatorname{Var}\left(R_{1}\right)+\ldots \operatorname{Var}\left(R_{2}\right)
$$

Problem Set 1 is due this Friday at 8pm in Gradescope.
\cdot My office hours have moved to Thursday 5-6pm on Zoom.

LAST TIME

Last Class:

- Exponential concentration bounds - Bernstein and Chernoff
- Connection to the central limit theorem

This Class:

- Bloom filters: random hashing to maintain a large set in small space.
- Possibly start on distinct items counting

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert (x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time.

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time. What data structure solves this problem? hesh tables

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time. What data structure solves this problem?

- Allow small probability $\delta>0$ of false positives. I.e., for any x,

$$
\operatorname{Pr}(q u e r y(x)=1 \text { and } x \notin S) \leqq \delta
$$

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time. What data structure solves this problem?

- Allow small probability $\delta>0$ of false positives. I.e., for any x,

$$
\operatorname{Pr}(q u e r y(x)=1 \text { and } x \notin S) \leq \delta .
$$

Solution: Bloom filters (repeated random hashing). Will use much less space than a hash table.

BLOOM FILTERS

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[\mathrm{~m}]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

m bit array \mathbf{A}| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[\mathrm{~m}]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Insertions

m bit array \mathbf{A}	0	0	0	0	0	0	0	0	0

Queries:

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[\mathrm{~m}]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Insertions: x

m bit array \mathbf{A}| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Queries:

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[\mathrm{~m}]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Queries:

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[\mathrm{~m}]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Queries:

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Queries:

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[\mathrm{~m}]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

Queries:
X

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[\mathrm{~m}]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \boldsymbol{h}_{k}$ mapping the universe of elements $U \rightarrow[\mathrm{~m}]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

No false negatives. False positives more likely with more insertions.

APPLICATIONS: CACHING

Akamai (Boston-based company serving $15-30 \%$ of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' - pages only visited once fill over 75% of cache.

APPLICATIONS: CACHING

Akamai (Boston-based company serving $15-30 \%$ of all web traffic) applies bloom filters to prevent caching of ‘one-hit-wonders' - pages only visited once fill over 75% of cache.

- When url x comes in, if query $(x)=1$, cache the page at x. If not, run insert(x) so that if it comes in again, it will be cached.

APPLICATIONS: CACHING

Akamai (Boston-based company serving $15-30 \%$ of all web traffic) applies bloom filters to prevent caching of ‘one-hit-wonders' - pages only visited once fill over 75% of cache.

- When url x comes in, if query $(x)=1$, cache the page at x. If not, run insert(x) so that if it comes in again, it will be cached.
- False positive: A new url (possible one-hit-wonder) is cached. If the bloom filter has a false positive rate of $\delta=.05$, the number of cached one-hit-wonders will be reduced by at least 95%.

APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.

APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.

Movies

APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.

Movies

- When a new rating is inserted for (user ${ }_{x}$, movie $_{y}$), add (user ${ }_{x}$, moviey) to a bloom filter.
- Before reading (user ${ }_{x}$, moviey) (possibly requiring an out of memory access), check the bloom filter, which is stored in memory.

APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.

Movies

- When a new rating is inserted for (user ${ }_{x}$, movie $_{y}$), add (user ${ }_{x}$, moviey) to a bloom filter.
- Before reading (user ${ }_{x}$, moviey) (possibly requiring an out of memory access), check the bloom filter, which is stored in memory.
- False positive: A read is made to a possibly empty cell. A $\delta=.05$ false positive rate gives a 95% reduction in these empty reads.

MORE APPLICATIONS

- Database Joins: Quickly eliminate most keys in one column that don't correspond to keys in another.
- Recommendation systems: Bloom filters are used to prevent showing users the same recommendations twice.
- Spam/Fraud Detection:
- Bit.ly and Google Chrome use bloom filters to quickly check if a url maps to a flagged site and prevent a user from following it.
- Can be used to detect repeat clicks on the same ad from a single IP-address, which may be the result of fraud.
- Digital Currency: Some Bitcoin clients use bloom filters to quickly pare down the full transaction log to transactions involving bitcoin addresses that are relevant to them (SPV: simplified payment verification).

ANALYSIS

For a bloom filter with m bits, and k hash functions, the insertion and query time is $O(k)$.

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\left(\frac{m-1}{m}\right)^{k}
$$

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ? $n \times k$ total hashes must not hit bit i.

$$
\underline{\operatorname{Pr}(A[i]=0)}=\frac{\operatorname{Pr}\left(h_{1}\left(x_{1}\right) \neq i \cap \ldots \cap h_{k}\left(x_{k}\right) \neq i\right.}{\left.\cap h_{1}\left(x_{2}\right) \neq i \ldots \cap h_{k}\left(x_{2}\right) \neq i \cap \ldots\right)}
$$

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?
Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ? $n \times k$ total hashes must not hit bit i.

$$
\begin{aligned}
\operatorname{Pr}(A[i]=0)= & \operatorname{Pr}\left(h_{1}\left(x_{1}\right) \neq i \cap \ldots \cap h_{k}\left(x_{k}\right) \neq i\right. \\
& \left.\cap h_{1}\left(x_{2}\right) \neq i \ldots \cap h_{k}\left(x_{2}\right) \neq i \cap \ldots\right) \\
= & \underbrace{\operatorname{Pr}\left(h_{1}\left(x_{1}\right) \neq i\right) \times \ldots \times \operatorname{Pr}\left(h_{k}\left(x_{1}\right) \neq i\right) \times \operatorname{Pr}\left(h_{1}\left(x_{2}\right) \neq i\right) \ldots}_{\underbrace{}}
\end{aligned}
$$

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ? $n \times k$ total hashes must not hit bit i.

$$
\begin{aligned}
\operatorname{Pr}(A[i]=0) & =\operatorname{Pr}(\underbrace{\left.\cap h_{1}\left(x_{2}\right) \neq i \ldots \cap h_{k}\left(x_{2}\right) \neq i \cap \ldots\right)}_{h_{1}\left(x_{1}\right) \neq i \cap \ldots \cap h_{k}\left(x_{1}\right) \neq i} \\
& =\underbrace{\operatorname{Pr}\left(h_{1}\left(x_{1}\right) \neq i\right)}_{\text {kn events each occuring with probability } 1-1 / m} \ldots \ldots \times \operatorname{Pr}\left(h_{k}\left(x_{1}\right) \neq i\right) \times \operatorname{Pr}\left(h_{1}\left(x_{2}\right) \neq i\right) \ldots
\end{aligned}
$$

ANALYSIS

How does the false positive rate δ depend on m, k, and the number

 of items inserted?Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

ANALYSIS

How does the false positive rate δ depend on m, k, and the number

 of items inserted?Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\begin{aligned}
\left(1-\frac{1}{m}\right)^{k n} & =\underbrace{\left(1-\frac{1}{m}\right)^{m} \int^{\frac{k n}{m}}}_{\approx e^{-1}} \underbrace{\left(1-\frac{1}{m}\right)^{m} \approx} e^{\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{1-\frac{m}{m}}{m}}} \\
& =e^{-1 \cdot k n / m}
\end{aligned}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

ANALYSIS

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\underline{\operatorname{Pr}(A[i]=0)}=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

Step 2: What is the probability that querying a new item w gives a false positive?
n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

ANALYSIS

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$
\begin{aligned}
\operatorname{Pr}\left(A\left[\mathrm{~h}_{1}(w)\right]\right. & \left.=\ldots=A\left[\mathrm{~h}_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[\mathrm{~h}_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[\underline{\left.h_{k}(w)\right]=1}\right)\right.
\end{aligned}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $\mathrm{h}_{1}, \ldots \mathrm{~h}_{k}$: hash functions, A : bit array, δ : false positive rate.

ANALYSIS

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$
\begin{aligned}
\operatorname{Pr}\left(A\left[h_{1}(w)\right]\right. & \left.=\ldots=A\left[h_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[h_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[h_{k}(w)\right]=1\right) \\
& =\left(1-e^{-\frac{k n}{m}}\right)^{\frac{k_{u}}{2}}
\end{aligned}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $\mathrm{h}_{1}, \ldots \mathrm{~h}_{k}$: hash functions, A : bit array, δ : false positive rate.

ANALYSIS

induison exclusion

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$
\operatorname{Pr}\left(A\left[h_{1}(w)\right]=\ldots=A\left[h_{k}(w)\right]=1\right)
$$

$$
\underset{\left.\left(1-e^{-\frac{k n}{m}}\right)^{k}\right) \text { Actually Incorrect! }}{\geqq \operatorname{Pr}\left(A\left[h_{1}(w)\right]=1\right)} \times \xlongequal{\ldots \times \operatorname{Pr}\left(A \left[h_{k}(w\right.\right.}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

ANALYSIS

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{n n}{m}}
$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$
\begin{aligned}
\operatorname{Pr}\left(A\left[\mathrm{~h}_{1}(w)\right]\right. & \left.=\ldots=A\left[\mathrm{~h}_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[\mathrm{~h}_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[\mathrm{~h}_{k}(w)\right]=1\right) \\
& =\left(1-e^{-\frac{k n}{m}}\right)^{k} \quad \text { Actually Incorrect! Dependent events. }
\end{aligned}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

CORRECT ANALYSIS SKETCH

Step 1: To avoid dependence issues, condition on the event that the A has t zeros in it after n insertions, for some $t \leq m$. For a non-inserted element w, after conditioning on this event we correctly have:

$$
\begin{aligned}
\operatorname{Pr}\left(A\left[h_{1}(w)\right]\right. & \left.=\ldots=A\left[h_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[h_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[h_{k}(w)\right]=1\right) .
\end{aligned}
$$

I.e., the events $A\left[h_{1}(w)\right]=1, \ldots, A\left[h_{k}(w)\right]=1$ are independent conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since h_{j} is a fully random hash function, $\operatorname{Pr}\left(A\left[h_{j}(w)\right]=1\right)=\frac{t}{m}$.
- Thus conditioned on this event, the false positive rate is $\left(1-\frac{t}{m}\right)^{k}$.
- It remains to show that $\frac{t}{m} \approx e^{-\frac{k n}{m}}$ with high probability. We already have that $\mathbb{E}\left[\frac{t}{m}\right]=\frac{1}{m} \sum_{i=1}^{m} \operatorname{Pr}(A[i]=0) \approx e^{-\frac{k n}{m}}$.

CORRECT ANALYSIS SKETCH

Need to show that the number of zeros t in A after n insertions is bounded by $O\left(e^{-\frac{k n}{m}}\right)$ with high probability.
Can apply Theorem 2 of: http://cglab.ca/~morin/ publications/ds/bloom-submitted.pdf

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)_{10^{k}}^{k}$.

- We have 100 million users and 10,000 movies. On average each user has rated only 10 movies so of these $\underline{10^{12}}$ possible (user,movie) pairs, only $10 * 100,000,000=\underline{10^{9}}=n$ (user,movie) pairs have non-empty entries in our table.
- We allocate $m=8 n=8 \times 10^{9}$ bits for a Bloom filter ($\underbrace{1 \mathrm{~GB})}$.

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(\underline{1-e^{\frac{-k n}{m}}}\right)^{k}$.

Movies

- We have 100 million users and 10,000 movies. On average each user has rated only 10 movies so of these 10^{12} possible (user,movie) pairs, only $10 * 100,000,000=10^{9}=n$ (user,movie) pairs have non-empty entries in our table.
- We allocate $m=8 n=8 \times 10^{9}$ bits for a Bloom filter (1 GB). How should we set k to minimize the number of false positives?

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

- Can differentiate to show optimal number of hashes is $k=\underline{\ln 2} \cdot \frac{m}{n}$.

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx=\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

- Can differentiate to show optimal number of hashes is $k=\ln 2 \cdot \frac{m}{n}$.
- Balances between filling up the array with too many hashes and having enough hashes so that even when the array is pretty full, a new item is unlikely to have all its bits set (yield a false positive)

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

- $n=10^{9}=n$ (user,movie) pairs with non-empty entries in our table.
- $m=8 n=8 \times 10^{9}$ bits for a Bloom filter (1 GB).

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

- $n=10^{9}=n$ (user,movie) pairs with non-empty entries in our table.
- $m=8 n=8 \times 10^{9}$ bits for a Bloom filter (1 GB).
- Set $k=\underline{\ln 2} \cdot \underline{\frac{m}{n}}=5.54 \approx 6$.

$$
\ln 2 \cdot 8
$$

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

- $n=10^{9}=n$ (user,movie) pairs with non-empty entries in our table.
- $m=8 n=8 \times 10^{9}$ bits for a Bloom filter (1 GB).
- Set $k=\ln 2 \cdot \frac{m}{n}=5.54 \approx 6$.
- False positive rate is $\approx\left(1-e^{-k \cdot \frac{n}{m}}\right)^{k}$

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

Movies

- $n=10^{9}=n$ (user,movie) pairs with non-empty entries in our table.
- $m=8 n=8 \times 10^{9}$ bits for a Bloom filter (1 GB).
- Set $k=\ln 2 \cdot \frac{m}{n}=5.54 \approx 6$.
- False positive rate is $\left.\approx 1-e^{-k \cdot \frac{n}{m}}\right)^{k} \approx \widetilde{\widetilde{k}}^{\frac{1}{2^{k}}}$

$$
\left(1-e^{-\ln 2 \cdot \frac{\eta}{7} \cdot \frac{m}{m}}\right)^{\frac{1}{2}}
$$

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

Movies

- $n=10^{9}=n$ (user,movie) pairs with non-empty entries in our table.
- $m=8 n=8 \times 10^{9}$ bits for a Bloom filter (1 GB).
- Set $k=\ln 2 \cdot \frac{m}{n}=5.54 \approx 6$.
- False positive rate is $\approx\left(1-e^{-k \cdot \frac{n}{m}}\right)^{k} \approx \frac{1}{2^{k}} \approx \frac{1}{2^{25.54}}=.021$.

BLOOM FILTER NOTE

An observation about Bloom filter space complexity:

$$
\text { False Positive Rate: } \delta \approx\left(1-e^{-\frac{k n}{m}}\right)^{k}
$$

For an m-bit bloom filter holding n items, optimal number of hash functions k is: $k=\ln 2 \cdot \frac{m}{n}$.

BLOOM FILTER NOTE

An observation about Bloom filter space complexity:

For an m-bit bloom filter holding n items, optimal number of hash functions k is: $k=\ln 2 \cdot \frac{m}{n}$.

Think Pair Share: If we want a false positive rate $<\frac{1}{2}$ how big does m need to be in comparison to n ?

$$
m=O(\log n), m=O(\sqrt{n}), m=O(n), m=O\left(n^{2}\right) ?
$$

BLOOM FILTER NOTE

An observation about Bloom filter space complexity:

$$
\text { False Positive Rate: } \delta \approx\left(1-e^{-\frac{k n}{m}}\right)^{k}
$$

For an m-bit bloom filter holding n items, optimal number of hash functions k is: $k=\ln 2 \cdot \frac{m}{n}$.

Think Pair Share: If we want a false positive rate $<\frac{1}{2}$ how big does m need to be in comparison to n ?

$$
m=O(\log n), m=O(\sqrt{n}), m=O(n), m=O\left(n^{2}\right) ?
$$

If $m=\frac{n}{\ln ^{2}}$, optimal $k=1$, and failure rate is:

$$
\delta=\left(1-e^{-\frac{n / \ln 2}{n}}\right)^{1}=\left(1-\frac{1}{2}\right)^{1}=\boxed{\frac{1}{2}}
$$

BLOOM FILTER NOTE

An observation about Bloom filter space complexity:

$$
\text { False Positive Rate: } \delta \approx\left(1-e^{-\frac{k n}{m}}\right)^{k}
$$

For an m-bit bloom filter holding n items, optimal number of hash functions k is: $k=\ln 2 \cdot \frac{m}{n}$.

Think Pair Share: If we want a false positive rate $<\frac{1}{2}$ how big does m need to be in comparison to n ?

$$
m=O(\log n), m=O(\sqrt{n}), m=O(n), m=O\left(n^{2}\right) ?
$$

If $m=\frac{n}{n^{2} 2}$, optimal $k=1$, and failure rate is:

$$
\delta=\left(1-e^{-\frac{n / \ln 2}{n}}\right)^{1}=\left(1-\frac{1}{2}\right)^{1}=\frac{1}{2} .
$$

I.e., storing n items in a bloom filter requires $O(n)$ space. So what's the point?

BLOOM FILTER NOTE

An observation about Bloom filter space complexity:

$$
\text { False Positive Rate: } \delta \approx\left(1-e^{-\frac{k n}{m}}\right)^{k}
$$

For an m-bit bloom filter holding n items, optimal number of hash functions k is: $k=\ln 2 \cdot \frac{m}{n}$.

Think Pair Share: If we want a false positive rate $<\frac{1}{2}$ how big does m need to be in comparison to n ?

$$
m=O(\log n), m=O(\sqrt{n}), m=O(n), m=O\left(n^{2}\right) ?
$$

If $m=\frac{n}{n^{2} 2}$, optimal $k=1$, and failure rate is:

$$
\delta=\left(1-e^{-\frac{n / \ln 2}{n}}\right)^{1}=\left(1-\frac{1}{2}\right)^{1}=\frac{1}{2}
$$

I.e., storing n items in a bloom filter requires $O(n)$ space. So what's the point? Truly $O(n)$ bits, rather than $O(n$. item size $)$.

Questions on Bloom Filters?

