COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.
Lecture 3

LOGISTICS

- Sign up for Piazza.
- Remember to complete the quiz, released after class today
and due Monday at 8pm.

- TA office hour schedules and locations have been posted
the course website.

LAST TIME

Last Class We Covered:

- Markov's inequality: the most fundamental concentration
bound. Pr(X > t-E[X]) <1/t
- Algorithmic applications of Markov's inequality, linearity of
expectation, and indicator random variables:
- Counting collisions to estimate CAPTCHA database size.

- Counting collisions to understand the runtime of hash tables
with random hash functions.

TODAY

Today:

- Finish up random hash functions and hash tables.

- Learn about 2-level hashing.

- Learn about 2-universal and pairwise independent hash
functions.

- Start on an application of random hashing to load balancing
in distributed systems.

- Through this application learn about:
- Chebyshev's inequality, which strengthens Markov's inequality.

HASH TABLES

We store m items from a large universe in a hash table with n
positions.

Hash Table

*

128-bit IP addresses

172.16.254.1

TR WN

192.168.1.34

h(16582616,) = 1590

16.58.26.164

L

- Want to show that when h : U — [n] is a random hash
function, query time is O(1) with good probability.
- Equivalently: want to show that there are few collisions
between hashed items. ,

COLLISION FREE HASHING

When storing m items in a table of size n, the expected number
of pairwise collisions (two items stored in the same slots) is:

S \ E[C] :.M
1 2n
Oled) = 0ls)

- For n = 4m? we have: E[C] = mg;'q;” < 3.
- By Markov's inequality there with probability at
least Z.

O(1) query time, but we are using O(m?) space to store m
items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

1
2
3
4

192.168.1.34 : collision free O(s?) space
. s; values hash function hash table

16.58.26.164

TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

Amm—n

192.168.1.34

16.58.26.164

collision free Space
s; values hash function hash table

For each bucket with s; values, pick a collision free hash function
mapping [s;] — [s7].

nl

TWO LEVEL HASHING

Want to preserve O(1) query time while using@ space.

Two-Level Hashing:

SL
randm‘hash é [j) ,
‘ L
s,
O(s?) space
hash table

172.16.254.1

16.58.26.164

- For each bucket with s; values, pick a collision free hash function
mapping [s;] — [s7].
- Just Showed: A random function is collision free with probability

> £ s0 can just generate a random hash function and check if it is
collision free.

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two O(>
hash functions. "

Xj, X stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Xj, X stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: S=n+ 3" s?

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + >_I_, E[s?]

=L

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] =n + Y1, F[s’]

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y7,

m) ?

’f/\/\{\ £ b))
Lupi = 0 o wig)t]

n —_—
o) - Zﬂ\%‘))‘-'
’J-:I

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n+ >,
m ? e
B[] =E || D Tngo)=i ((L Yh+ (/>
— j=1

I (0\; o+ G\'b*b\ovc\-a-@
=E Z%l The)=i| T
L=
—

Collisions again!
P

Xj, X stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to\éonstants space used is: E[S] =n+ 1,
2

RS xsE[s-Z] - Zﬂh@
VA S _

\(J‘::Q =E Z Hh (x)=i Hh (xp)= Z E[Hh(X; i Hh(xk):f

U:kelm] jske[m]

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y7,
2

m
E[sT]=E | | Y The)=i
=

=E Z Ihe)=i * Ihxo)=i | = Z E]Ih(x,):;'ﬂh(xk):f}-

Ljikelm] jikelm] —

- Forj=k,

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y7,
2

m
E[sT]=E | [> Tng)=
j=1

=E Z Ih)=i * Ihixe)= Z E]Ih(x,):;'ﬂh(xk):f}-

U:kelm] jske[m]
- Forj =R E [Tnpe; - In j\/ IE[
[T = Lo
f\

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y7,
2

m
E[sT]=E | | Y The)=i
=

=E Z Ihe)=i * Ihxo)=i | = Z E[Hh(x,):)"]lh(xk):i :
| kem] j helm]

. [2 -
“ Forj=RE _Hh(xj):i : Hh(xk):l} =E |:(]Ih(x,)i)] = Pr[h(x;) =]

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y7,

2
m
E[sT]=E | [> Tng)=
j=1

=K Z Hh og)=i Hh ()= Z E |:I[h(X,) Hh(Xk)

U:kelm] jske[m]

. [2 -
© Forj =R E [Thpg)=i - Hh(xk):l} =E (]Ih(x,):i)] = Prih(x) =1 = 1.

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y7,
2

m
E[sT]=E | | Y The)=i
=

=E Z Ihe)=i * Ihxo)=i | = Z E[Hh(x,):)"]lh(xk):i :
| kem] jhem) —

. [2 -
“Forj=RE Ihog)=i - Hh(xk):l} =E |:(]Ih(x,)i)] = Prih(x) =1 = 1.

- Forj#Rk,

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y7,
2

m
E[sT]=E | | Y The)=i
=

=E Z Ihe)=i * Ihxo)=i | = Z E[Hh(x,):)"]lh(xk):i :
| kem] j helm]

: FOI’j = /?, E Hh(xj):i : Hh(xk):l} =E

“ Forj#RE Hh(xj):i']lh(xk):i} V;\’L
—k?—\\

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y7,

E[s;] =E

- Forj=k E

- Forj#Kk E

2

I m
> The)=i
j=1

> I Thgay—i| = D E[Hh(m:»"ﬂh(m:f :

Lj-Re[m] j,ke[m]
Ty=i“Tngey-1] = E [(Hhu =)] =Prh(x) =11 =3

- — 1)
Iy Tty] = PrlnGs) =ThGs) =17 2 5 7y

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S] =n + Y7,

m
Eﬁ] =E || Y Tne)=i
[V
=E Z Ihe)=i * Ihxo)=i | = Z E[Hh(x,):)"]lh(xk):i :
| kem] j helm]

- 2 i
[Thx)=i - Hh(xk):i] =E |:(]Ih(x,)i)] = Prlh(x) =] =

Ihog)=i - Hh(xk):l} =Prih(x)) =inh(x) =1 = 7.

X;, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7

SPACE USAGE

Elsf]= Y E [Hh(x,):,- 'Hh(xk)::}

— Jkem]

“Forj=RE [Hh(xj):i : Hh(xk):/} =1

“ Forj#RE [Hh(xj)=i Thx)=i| = 72

Xj,Xp: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. 8

SPACE USAGE

E[s7] = Z E [Hh(x,-):i ']Ih(xk)::}
J,ke[m]

m 1+2 m 1
B n 2) n?

“Forj=RE [Hh(xj):i : Hh(xk):/} =1

“ Forj#RE [Hh(xj)=i :]Ih(xk):i:| = .

Xj,Xp: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. 8

SPACE USAGE

\
]E[SIZ] = Z E [Hh(X;):i .]Ih(Xk):i:| (G\, +)o + O>

j,Re[m] _— - ~

1 m 1 (o rh + C’L‘
—
Forj=R E {Ih(y=i - Ing):} =1
Forj# R E [Eh<xj)=i : Hh(xm:,} St

Xj,Xp: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. 8

SPACE USAGE

E[s7] = Z E [Hh(x,-):i ']Ih(xk)::}
J,ke[m]

1 <m> 1
=m-——+2- R
n 2) n’

Sl=

“ Forj=RE [Hh(xj):i : Hh(xk):/} =

: FOT’] * /?, D) {lh(,)=i " lm/,» ‘} = -

Xj,Xp: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

SPACE USAGE

Elsf]= Y E [Hh(x,-):i ']Ih(xk):}
J,ke[m]

o 2) n?
m mm-1) < V)
= — + % - ,ﬁl Y (r)(m \ <
n n m FY\Z— ~
“ Forj=RE [Hh(xj):i ' Hh(xk):/} =1

“ Forj#RE [Hh(xj)=i :]Ih(xk):i:| = .

N =

Xj,Xp: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

SPACE USAGE

) :—E[_Sﬂ = Z E |:Hh(x,-):i .]Ih(xk):i:| X-) ! XK e
LR jhelm] any L Hem(—~en
1 m 1 l)f-‘lf\f
Kove o Xm =Moot) s
_m. m(mz—) <2 (Ifwesetn=m.)
n n prm—————g

“ Forj=RE [Hh(xj):i ' Hh(xk):/} =1

“ Forj#RE [Hh(xj)=i :]Ih(xk):i:| = .

_—

Xj,Xp: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. 8

SPACE USAGE

Elsf]= Y E [Hh(x,-):i ']Ih(xk):}
J,ke[m]

m 1+2 m 1

B n 2) n?

m m(m-=1
—+¥§2(Ifwesetn:m.)
n n

“ Forj=RE [Hh(xj):i ' Hh(xk):/} =1

“ Forj#RE [Hh(xj)=i .]Ih(xk):i:| -1

Total Expected Space Usage: (if we set n = m)

E[S] = n + XH:E[s,.Z]

=~

Xj,Xp: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

SPACE USAGE

Elsf]= Y E [Hh(x,):,- 'Hh(xk)::}

J:Rem]
1 m 1
=m. . — 2 Y
n+ <2> n?
m m(m-—1
- — (-)§2(|fwesetn:m.)
" n SR

“ Forj=RE [Hh(xj):i ' Hh(xk):/} =1
“ Forj#RE [Hh(xj)=i :]Ih(xk):i:| = .

Total Expected Space Usage: (if we set n = m)

n
]E[S]_H+ZE[S,2]§n+n~2_3n@
=1 — >

Xj,Xp: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. 8

SPACE USAGE

B[= > E [Ingy)= - Ingu=] ockes L“\“'\D
(m () kel
N =

1 g@d\ﬂw\«m%
- +\L.> (T.r1 I)
7%_#% (Ifwesetn—m)

- Forj=RkE [Hh(xj):i ' Hh(xk):/} =1 (1}41:\\ VARE

: FOF]#/?,E[Hh(x)=i * In(x)= } = . AL, .. >
Total Expected Space Usage' (if we set n = m)

(e
55 Sjgl
]E[S]_n+ZE[sz]<n+n 2=3n=3m| "

&
> 0~
@ptimal space with O(1) query time!

Xj,Xp: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i

EFFICIENTLY COMPUTABLE HASH FUNCTION

So Far: we have assumed a fully random hash function h(x)
with Prih(x) = i] = 1 fori € 1,...,n and h(x), h(y) independent
forx #y.

EFFICIENTLY COMPUTABLE HASH FUNCTION

So Far: we have assumed a fully rand function h(x)
with Prlh(x) = i] = I forie 1,7

.,nand h(x), h(y) independent
forx #£y.

- To compute a random hash function we have to store a table
of x values and their hash values. Would take at least O(m)
space and O(m) query time to look up h(x) if we hash m
values. Making our whole quest for O(1) query time
pointless!

x h(x)

X, | 45

X, 1004

x | 10

Xm | 12

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

10

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

Prlh(x) = h(y)] < -

10

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

Z_Er“‘(x) —h(y) _3

Exercise: Rework the two level hashing proof to show that this

property is really all that is needed. . 0 -
EY 1

10

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

{ 2-Universal Hash Functi@)(low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

Prlh(x) = h(y)] < -

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random fro’m/[nj,
Prih(x) = h(y)] = 1 (so a fully random hash function is 2-universal)

-

10

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash functlon from h.: U — [n] is two universal if:
\3 g\/C -’\\'\‘«T\S }(ij

Prlh(x) = h(y)] < .

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Prih(x) = h(y)] = 1 (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p > |U|. Choose random
a,b € [p] with a # 0. Represent x an an integer and let

h(x) =(ax+b rrl)gp) mod n. 0

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:

s 1
72.

Ur[h(x) —inhy) =] =

\)

D (b)) » Pr Wyl 5571

—~l

PAIRWISE INDEPENDENCE

R N\-)
Another common requirement for a hash function: /P/@”bo "’g) “‘> AL

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:

—

Prih() =N h(y) =] = .

.

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

_}T)(\\ wed A bl Fancion ¢ 2 wonaid
F Vxy Phd#h(9))E 5

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:

Prih() =N h(y) =] = .

.

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

Prih(x) = h(y)] = Z Prih(x) = inh(y) =

(J — V;‘m
ffDL of <_O|)‘9
G\éSW\\"rb- t/\ VS PNJ

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:

Prih() =N h(y) =] = .

.

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

Prih(x)]—ZPr[h —iﬂh(y):i]:n.ﬁ:%.

A closely related (ax + b) mod p construction gives pairwise
independence on top of 2-universality.

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from U — [n] IS pa|rvv|se independent if for all i,j € [n]:
Sudn L
Prih(x) =inh(y) =] = -

.

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

Pr{h(x)]—ZPr[h y=inhy)=il=n— =

A closely related (ax + b) mod p construction gives pairwise
independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable.

Questions on Hash Tables?

NEXT STEP

1. We'll consider an application where our toolkit of linearity of
expectation + Markov's inequality doesn’t give much.

NEXT STEP

1. We'll consider an application where our toolkit of linearity of
expectation + Markov's inequality doesn’t give much.

2. Then we'll show how a simple twist on Markov's can give a
much stronger result.

ANOTHER APPLICATION

Randomized Load Balancing:

l Client Requests

/TN
AR AR ... AR

[otitt] Lo 111l] (o 1111]

Server 1 Server 2 Server k

14

ANOTHER APPLICATION

Randomized Load Balancing:

l Client Requests

/TN
AR AR ... AR

[otitt] Lo 111l] (o 1111]

Server 1 Server 2 Server k

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

14

ANOTHER APPLICATION

Randomized Load Balancing:

l Client Requests

/TN
AR AR ... AR

[otitt] Lo 111l] (o 1111]

Server 1 Server 2 Server k

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

- Often assignment is done via a random hash function. Why?

