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LOGISTICS

- Sign up for Piazza.
- Remember to complete the quiz, released after class today
and due Monday at 8pm.

- TA office hour schedules and locations have been posted
the course website.



LAST TIME

Last Class We Covered:

- Markov's inequality: the most fundamental concentration
bound. Pr(X > t-E[X]) <1/t
- Algorithmic applications of Markov's inequality, linearity of
expectation, and indicator random variables:
- Counting collisions to estimate CAPTCHA database size.

- Counting collisions to understand the runtime of hash tables
with random hash functions.



TODAY

Today:

- Finish up random hash functions and hash tables.

- Learn about 2-level hashing.

- Learn about 2-universal and pairwise independent hash
functions.

- Start on an application of random hashing to load balancing
in distributed systems.

- Through this application learn about:
- Chebyshev's inequality, which strengthens Markov's inequality.



HASH TABLES

We store m items from a large universe in a hash table with n
positions.

Hash Table

*

128-bit IP addresses

172.16.254.1
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192.168.1.34

h( 16582616, ) = 1590

16.58.26.164
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- Want to show that when h : U — [n] is a random hash
function, query time is O(1) with good probability.
- Equivalently: want to show that there are few collisions
between hashed items. ,



COLLISION FREE HASHING

When storing m items in a table of size n, the expected number
of pairwise collisions (two items stored in the same slots) is:

S \ E[C] :.M
1 2n
Oled) = 0ls)

- For n = 4m? we have: E[C] = mg;'q;” < 3.
- By Markov's inequality there with probability at
least Z.

O(1) query time, but we are using O(m?) space to store m
items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.




TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.
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TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

Amm—n

192.168.1.34

16.58.26.164

collision free Space
s; values hash function hash table

For each bucket with s; values, pick a collision free hash function
mapping [s;] — [s7].
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TWO LEVEL HASHING

Want to preserve O(1) query time while using@ space.

Two-Level Hashing:

SL
randm‘hash é [ j) ,
‘ L
s,
O(s?) space
hash table

172.16.254.1

16.58.26.164

- For each bucket with s; values, pick a collision free hash function
mapping [s;] — [s7].
- Just Showed: A random function is collision free with probability

> £ s0 can just generate a random hash function and check if it is
collision free.



SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two O( >
hash functions. "

Xj, X stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 7
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Query time for two level hashing is O(1): requires evaluating two
hash functions.
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Collisions again!
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Xj, X stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.
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Xj,Xp: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.
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Xj,Xp: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i




EFFICIENTLY COMPUTABLE HASH FUNCTION

So Far: we have assumed a fully random hash function h(x)
with Prih(x) = i] = 1 fori € 1,...,n and h(x), h(y) independent
forx #y.



EFFICIENTLY COMPUTABLE HASH FUNCTION

So Far: we have assumed a fully rand function h(x)
with Prlh(x) = i] = I forie 1,7

.,nand h(x), h(y) independent
forx #£y.

- To compute a random hash function we have to store a table
of x values and their hash values. Would take at least O(m)
space and O(m) query time to look up h(x) if we hash m
values. Making our whole quest for O(1) query time
pointless!

x h(x)

X, | 45

X, 1004

x | 10

Xm | 12
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EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash functlon from h.: U — [n] is two universal if:
\3 g\/C -’\\'\‘«T\S }(ij

Prlh(x) = h(y)] < .

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Prih(x) = h(y)] = 1 (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p > |U|. Choose random
a,b € [p] with a # 0. Represent x an an integer and let

h(x) =(ax+b rrl)gp) mod n. 0
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PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:
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PAIRWISE INDEPENDENCE

R N\-)
Another common requirement for a hash function: /P/@”bo "’g) “‘> AL

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:

—

Prih() =N h(y) =] = .

.

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?
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PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U — [n] is pairwise independent if for all i,j € [n]:

Prih() =N h(y) =] = .

.

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

Prih(x) ]—ZPr[h —iﬂh(y):i]:n.ﬁ:%.

A closely related (ax + b) mod p construction gives pairwise
independence on top of 2-universality.



PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from U — [n] IS pa|rvv|se independent if for all i,j € [n]:
Sudn L
Prih(x) =inh(y) =] = -

.

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

Pr{h(x) ]—ZPr[h y=inhy)=il=n— =

A closely related (ax + b) mod p construction gives pairwise
independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable.



Questions on Hash Tables?
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expectation + Markov's inequality doesn’t give much.



NEXT STEP

1. We'll consider an application where our toolkit of linearity of
expectation + Markov's inequality doesn’t give much.

2. Then we'll show how a simple twist on Markov's can give a
much stronger result.
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ANOTHER APPLICATION

Randomized Load Balancing:

l Client Requests

/TN
AR AR ... AR

[otitt] Lo 111l] (o 1111]

Server 1 Server 2 Server k

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

- Often assignment is done via a random hash function. Why?



